

PREPARED FOR:

CEMEX CONSTRUCTION MATERIALS PACIFIC, LLC 2365 IRON POINT ROAD, SUITE 120 FOLSOM, CALIFORNIA 95630

PREPARED BY:

GEOCON CONSULTANTS, INC. 3160 GOLD VALLEY DRIVE, SUITE 800 RANCHO CORDOVA, CALIFORNIA 95742

GEOTECHNICAL • ENVIRONMENTAL • MATERIALS

Project No. S1294-05-01 February 22, 2018

VIA ELECTRONIC MAIL

Debbie Haldeman Regional Natural Resources Manager, Northern California/Nevada Cemex Construction Materials Pacific, LLC 2365 Iron Point Road, Suite 120 Folsom, California 95630 deborahg.haldeman@cemex.com

Subject: SLOPE STABILITY EVALUATION

CEMEX CACHE CREEK MINE

MINING PERMIT AND RECLAMATION PLAN AMENDMENT PROJECT

YOLO COUNTY, CALIFORNIA

Dear Ms. Haldeman:

In accordance with your authorization of our proposal (Geocon proposal No. S1294-05-01P, dated September 27, 2017), we have performed a geotechnical evaluation of the slopes associated with the Cemex Cache Creek Mine in Yolo County, California. Our study will be used to support the Mining Permit and Reclamation Plan Amendment Project.

The accompanying report presents our findings, conclusions, and recommendations regarding geotechnical aspects of mining and reclamation slope configurations as presently proposed. Based on the results of our study, the proposed perimeter mining and reclamation slopes are anticipated to meet the performance standards set forth in the Yolo County Off-Channel Surface Mining Ordinance, Yolo County Surface Mining Reclamation Ordinance and the California Surface Mining and Reclamation Act. In our opinion, the proposed project is feasible from a geotechnical viewpoint provided the recommendations of this report are followed.

Please contact us if you have any questions regarding this report or if we may be of further service.

Sincerely,

GEOCON CONSULTANTS, INC.

Jeremy J. Zorne, PE, GE

Senior Engineer

John C. Pfeiffer, PG, CEG Senior Geologist

Victor M. Guardado, EIT Staff Engineer

TABLE OF CONTENTS

SLC	PE ST	TABILITY EVALUATION	PAGE
1.0	INTR	RODUCTION	1
2.0	SITE 2.1 2.2	AND PROJECT INFORMATION Existing Entitlements Proposed Project	2
3.0	SOIL	AND GEOLOGIC CONDITIONS	5
4.0	GRO	UNDWATER	5
5.0	SEISI 5.1 5.2 5.3 5.4	MICITY AND GEOLOGIC HAZARDS Mapped Geologic Hazard Zones Surface Fault Rupture Seismicity Liquefaction	6 6
6.0	SLOF 6.1 6.2 6.3 6.4 6.5 6.6 6.7	PE STABILITY AND SEEPAGE ANALYSIS Stability Analysis Sections Stability Analysis Material Parameters Groundwater/Surface Water Conditions Seismic Forces for Dynamic (Seismic) Slope Stability Analysis High-Voltage Power Transmission Line Towers Slope Stability Analysis and Results Seepage Analysis and Results	8 10 10 11
7.0	7.1 7.2 7.3	CLUSIONSSlope StabilitySeepagePit Capture Potential	14 14
8.0	RECO	OMMENDATIONS	14
9.0	FURT 9.1 9.2	THER GEOTECHNICAL SERVICES Plan Review Future Services	15
10.0	LIMI	TATIONS AND UNIFORMITY OF CONDITIONS	16
11.0	REFE	ERENCES	17
FIG	Figur Figur Figur Figur	re 1, Vicinity Map re 2, Site Plan re 3-1, Stability Analysis – Section S-1 re 3-2, Stability Analysis – Section S-2 re 3-3, Stability Analysis – Section S-3 re 3-4, Stability Analysis – Section S-4	

PHOTOGRAPHS

Photos 1 through 4

TABLE OF CONTENTS (Continued)

APPENDIX A

FIELD EXPLORATION

Figure A1, Key to Logs

Figures A2 through A12, Log of Boring (B1 through B4)

Previous Boring Logs (Kleinfelder, 1994)

APPENDIX B

LABORATORY TESTING PROGRAM

Figure B1, Summary of Laboratory Results

Figure B2, Atterberg Limits

Figure B3, Grain Size Distribution

Figure B4, Moisture-Density Relationship

Figure B5, Direct Shear Test Report

Figures B6 and B7, Unconfined Compressive Strength

Figures B8 through B13, Triaxial Shear Strength – CU Test with pore pressure measurements

Figures B14 and B15, Compaction Test Reports

Previous Kleinfelder Lab (1994)

APPENDIX C

SLOPE STABILITY AND SEEPAGE ANALYSIS

Figure C1, Seepage Analysis – Section 1 – Cache Creek 100-year Water Level

Figure C2, Slope Stability, Section 1, Mining, ALG, Low Water Cache Creek (Static)

Figure C3, Slope Stability, Section 1, Mining, ALG, Low Water Cache Creek (Seismic)

Figure C4, Slope Stability, Section 1, Mining, AHG/100-Year Water Cache Creek (Static)

Figure C5, Slope Stability, Section 1, Mining, AHG/100-Year Water Cache Creek (Seismic)

Figure C6, Slope Stability, Section 1, Reclamation, AHG/100-Year Water Cache Creek (Static)

Figure C7, Slope Stability, Section 1, Reclamation, AHG/100-Year Water Cache Creek (Seismic)

Figure C8, Slope Stability, Section 2, Mining, ALG (Static)

Figure C9, Slope Stability, Section 2, Mining, ALG (Seismic)

Figure C10, Slope Stability, Section 2, Reclamation, AHG (Static)

Figure C11, Slope Stability, Section 2, Reclamation, AHG (Seismic)

Figure C12, Slope Stability, Section 3, Mining, ALG, No Tower Present (Static)

Figure C13, Slope Stability, Section 3, Mining, ALG, No Tower Present (Seismic)

Figure C14, Slope Stability, Section 3, Mining, ALG –Tower with 25' Setback (Static)

Figure C15, Slope Stability, Section 3, Mining, ALG –Tower with 25' Setback (Seismic)

Figure C16, Slope Stability, Section 4, Alluvial Separator, ALG, Backfilled One Side (Static)

Figure C17, Slope Stability, Section 4, Alluvial Separator, ALG, Backfilled One Side (Seismic)

APPENDIX D

LIQUEFACTION ANALYSIS

1.0 INTRODUCTION

Geocon Consultants, Inc. has prepared this slope stability evaluation in support of the CEMEX Construction Materials Pacific, LLC. (CEMEX) Cache Creek Mining Permit and Reclamation Plan Amendment Project (Project). Specifically, CEMEX proposes to modify Long-Term Off-Channel Mining Permit No. ZF #95-093, Reclamation Plan No. ZF #95-093 and Development Agreement No. 96-287 (as subsequently amended, "Existing Entitlements") with revised mining and reclamation plans and a 20 year time extension. This report presents results of our geotechnical investigation for evaluation of slopes associated with the Cemex Cache Creek Mine (Mine) in Yolo County, California. The approximate site location is shown on the Vicinity Map, Figure 1.

The following geotechnical report was previously prepared for the site: *Slope Stability Analysis, Solano Concrete Madison Plant, Highway 505 and Highway 16, Yolo County, California*, prepared by Kleinfelder, Inc. (File No. 40-2695-01), dated August 1, 1994. The Kleinfelder report was based on 13 exploratory borings performed throughout the site to depths ranging from approximately 45 to 90 feet. The Kleinfelder study also included laboratory testing and numerical slope stability analyses for the proposed mining and reclamation slopes. As part of our study, we have reviewed and incorporated pertinent subsurface and laboratory testing information from the 1994 Kleinfelder report.

The purpose of our study was to further evaluate subsurface conditions, determine pertinent geotechnical parameters, and evaluate slope stability for proposed mining and reclamation slopes under static and dynamic (seismic) conditions with respect to the performance standards outlined in the Yolo County *Off-Channel Surface Mining Ordinance* (OCSMO), Yolo County *Surface Mining Reclamation Ordinance* (SMRO) and California *Surface Mining and Reclamation Act* (SMARA).

To prepare this report, we performed the following scope of services:

- Reviewed published geologic maps, geotechnical reports, and other literature pertaining to the site. A list of referenced material is included in Section 11.0 of this report.
- Reviewed available plans for the project to select areas of exploration.
- Performed a site reconnaissance to review project limits, determine access and mark out exploratory excavation locations for subsequent utility clearance.
- Paid required fees and obtained a soil boring permit from Yolo County Environmental Health Department (YCEHD).
- Notified subscribing utility companies via Underground Service Alert (USA) a minimum of 2 business days prior to performing exploratory excavations at the site.
- Retained the services of a California C57-licensed drilling subcontractor to perform exploratory borings using truck-mounted drilling equipment.
- Performed four exploratory borings (B1 through B4) using a truck-mounted drill rig equipped with hollow-stem auger drilling equipment to depths ranging from approximately 5 to 86 feet.
- Logged the borings in accordance with the Unified Soil Classification System (USCS).

- Obtained soil samples from the borings.
- Performed laboratory tests on selected soil samples to evaluate pertinent geotechnical parameters.
- Performed slope stability and seepage analyses for the proposed mining and reclamation slopes considering both static and seismic conditions.
- Prepared this report summarizing our findings, conclusions and recommendations regarding the geotechnical aspects of the proposed project.

Approximate locations of current and previous subsurface explorations are shown on the Site Plan, Figure 2. Details of our field exploration program including exploratory boring logs (current and previous) are presented in Appendix A. Details of our laboratory testing program and test results are summarized in Appendix B. Details of our slope stability and seepage analyses are summarized in Appendix C. Details of our liquefaction analyses are summarized in Appendix D.

2.0 SITE AND PROJECT INFORMATION

The CEMEX property occupies approximately 1,900 acres south of Cache Creek, and north of State Route 16 both on the west and east sides of Interstate 505 (I-505).

2.1 Existing Entitlements

Under Existing Entitlements, mining is allowed on ± 586 acres in seven phases. Mining is currently taking place in Phases 3 and 4, while Phase 1 is in various stages of reclamation. Dewatering for mining purposes is not currently permitted, but may be permitted in the future subject to compliance with OCSMO requirements. The site is currently mined dry and "wet-mined" using a dredge (Photo 1). A typical undisturbed portion of the site (currently used for agriculture) is shown in Photo 2.

Existing Entitlements and the supporting 1994 Kleinfelder Report generally conform to the following plans:

- 1. Off-Channel Mining Plans, Madison Plant, Yolo County, California (21 Sheets) prepared by Cunningham Engineering, dated November 1995.
- 2. Off-Channel Reclamation Plans, Madison Plant, Yolo County, California (22 Sheets) prepared by Cunningham Engineering, dated November 1995.

The 1995 mining plans (Ref. 1) generally show that excavated mining slopes are to be inclined at 1.5H:1V (horizontal to vertical) 5 feet below the Average Low Groundwater (ALG) level and 2H:1V above this level. The 1995 reclamation plans (Ref. 2) show the various pit backfill (reclamation) surfaces within each pit, including "alluvial separators" (or berms) between pits.

We understand that mining activities at the site have differed from the 1995 mining plans in limited areas and that the Project will address these deviations through a set of revised mining and reclamation plans. More specifically, one or more of the intended alluvial separators has been removed by mining.

2.2 Proposed Project

The Project proposes to continue to mine on 489± acres in seven phases and reclamation is proposed to occur on 838± acres of the 1,902± acre property. The maximum mining depth is 70 feet. Reclamation will consist of returning the mined areas to agriculture, permanent lakes and wildlife habitat as detailed in a *Revised Reclamation Plan* prepared by Compass Land Group. The Project includes revised mining plans and a reclamation plan that will include a "constructed" alluvial separator between Phases 3 and 4 and the development of a "natural" alluvial separator between an existing and future mining pit (i.e., between Phases 4 and 5). The "constructed" alluvial separator will be comprised of cobble and gravel mixed with clay (Photos 3 and 4) and the "natural" alluvial separator will consist undisturbed, natural ground between existing and future mining pits. The purpose of the constructed alluvial separator is to re-purpose proposed Phase 3 as a silt pond (to accept and settle process wash fines). The purpose of the future developed natural alluvial separator between proposed Phases 4 and 5 is to facilitate backfilling of Phase 4 for a return to agriculture while maintaining a stable separation for the future open water lake in future Phase 5.

Based on the preliminary revised mining plans (Cunningham Engineering, January 2018), the Project includes seven phases as described in Table 2.2.

TABLE 2.2 MINING DETAILS

Phase	Proposed Mining	Maximum Pit		er Elevation MSL)		
Thase	Areas (acres)	Depth (feet)	Avg. High	Avg. Low		
Phase 1	Reci	Reclaimed Agricultural Land in Progress – No Additional Mining				
Phase 2	No	Additional Mining -	- Area to be used for produ	ct stockpiling		
Phase 3	67	70	114	107		
Phase 4	137	70	112	107		
Phase 5	135	70	111	105		
Phase 6	135	70	108	100		
Phase 7	15	35	121	116		

Under existing conditions, Phases 1, 3 and 4 encompass the area of the current and previous mining pits, immediate south of Cache Creek. Phase 2 was partially mined (pursuant to allowances under Existing Entitlements) and currently supports existing aggregate product stockpiles. Phases 3 and 4 are in various stages of mining and reclamation. Phases 5, 6, and 7 have not been mined.

Under the proposed Project, no further mining is planned in proposed Phases 1 and 2. The revised mining plan focuses primarily on future mining in Phases 3 through 7. The proposed site configuration and phasing are shown on the Site Plan, Figure 2.

Similar to Existing Entitlements, the proposed Project's mining will create slopes of varying height and inclinations. Some of these mining and reclamation slopes will intercept the groundwater potentiometric surface. The OCSMO Section 10-4.431 stipulates that:

"Except where benches are used, all banks above groundwater level shall be sloped no steeper than 2:1 (horizontal:vertical). Proposed steeper slopes shall be evaluated by a slope stability study, prepared by a Registered Civil Engineer. Slopes below the groundwater level shall be no steeper than 1:1 (horizontal:vertical). Slopes located five (5) feet or less below the summer low groundwater level shall not be steeper than 2:1 (horizontal:vertical)."

The slope inclinations stipulated by the SMRO Section 10-5.530 are generally consistent with these requirements. However, the SMRO Section 10-5.530 also stipulates that:

"...the minimum factor of safety for all design reclamation slopes located adjacent to levees or below existing structures shall not be less than 1.5 for static and 1.1 for pseudostatic (seismic) conditions. Other reclamation slopes shall meet a minimum factor of safety that is consistent with the post-reclamation use proposed for the mining area."

Consistent with the OCSMO and SMRO, the Project proposes typical slope mining configurations of 2H:1V to 5 feet below the ALG level and up to 1:1 below this level. Typical mining slope configurations are shown on Figures 3-1 through 3-4.

As mining is completed in each phase, reclamation will generally include filling Phase 3 with mostly pond fines (silt) resultant from onsite aggregate processing as well and filling Phase 4 with excavated/stockpiled overburden and topsoil. In general, Phases 1 through 4 will be reclaimed to agriculture whereas Phases 5 and 6 will be reclaimed as "lakes." Phase 7 will also be reclaimed to agriculture. Phases 1 and 2 are generally already at their finish reclamation design elevation. Phases 3 and 4 are planned to be filled to at least 5 feet above the *Average High Groundwater* (AHG) level.

Reclamation will occur in phases and will require the "constructed" alluvial separator between Phases 3 and 4. The "constructed" alluvial separator will be comprised of cobble (generally $3\frac{1}{2}$ to 7 inches) and gravel mixed with clay (Photos 3 and 4) with side slopes of 4H:1V or flatter. Per Cemex, this material will be placed by dumping and pushing out/contouring using a dozer. A typical "constructed" alluvial separator detail is shown on Figure 3-4. No backfill will be required for the developed natural alluvial separator between Phases 4 and 5. Phase 7 will also be reclaimed to an elevation at least 5 feet above the AHG level.

3.0 SOIL AND GEOLOGIC CONDITIONS

We identified soil and geologic conditions by performing exploratory borings, reviewing the boring logs contained in the 1994 Kleinfelder report, and reviewing the referenced geologic literature (Section 11.0). Soil descriptions provided below include the USCS symbol where applicable.

Based on the *Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierran Foothills* (Helley and Harwood, 1985), the site is underlain by Holocene-aged stream channel deposits. These depositional and erosional deposits are associated with open, active stream channels and generally consist of unweathered gravel, sand, silt, and clay.

The overburden soil at the site consists of an approximate 5- to 15-foot-thick layer of interbedded silty sand (SM), silt (ML), silty clay (CL-ML), sandy clay (CL), clay (CL), and clayey sand (SC). The gravelly soil below the overburden generally consists of loose to very dense poorly graded sand (SP), poorly graded sand with gravel (SP), poorly graded gravel with sand (GP), and silty gravel with sand (GM), with thin (up to 5 feet) interbedded layers of clay (CL) and poorly graded sand with silt (SP-SM) and scattered small cobbles up to 4 inches. The gravel and cobbles include slightly weathered to fresh metavolcanic and metasedimentary rock with some quartz and chert. The strata proposed for mining overlays a very stiff to hard clay layer.

Based on the available subsurface information, top and bottom elevations of the soil layers are relatively consistent suggesting relatively flat stratigraphy with no significant dip, which is consistent with the erosional/depositional geology of the area. The general subsurface profile at the site is shown on Figures 3-1 through 3-4.

Subsurface conditions described in the previous paragraphs are generalized. The boring logs included in Appendix A contain soil type, color, moisture, consistency/relative density, and USCS classification of the materials encountered at specific locations and elevations.

4.0 GROUNDWATER

We encountered groundwater in Borings B1 and B2 at depths of 25 and 35 feet, respectively, on October 12 and 13, 2017. These depths correspond to approximate groundwater elevations of 105 and 108 feet, which are near the predicted AHG near the boring locations.

Table 4.0 presents the estimated AHG and ALG levels at the site (Luhdorff and Scalmanini, April 2017):

TABLE 4.0
ESTIMATED AVERAGE HIGH AND LOW GROUNDWATER ELEVATIONS

Crayndyvatar Carditian	Groundwater Elevation (Feet, MSL)		
Groundwater Condition	West	East	
Average High	113	105	
Average Low	108	100	

5.0 SEISMICITY AND GEOLOGIC HAZARDS

5.1 Mapped Geologic Hazard Zones

The site is not located in any currently established official geologic hazard zones (e.g. liquefaction, active faulting, landslides) established by the California Geologic Survey (CGS) or the local agency specific plan element.

5.2 Surface Fault Rupture

The numerous faults in Northern California include active, potentially active, and inactive faults. The criteria for these major groups were developed by the CGS for the Alquist-Priolo Earthquake Fault Zone (APEFZ) Program (Bryant and Hart, 2007). By definition, an active fault is one that has had surface displacement within the last 11,000 years. A potentially active fault has demonstrated surface displacement during Quaternary time (approximately the last 1.6 million years) but has had no known movement within the past 11,000 years. Faults that have not moved in the last 1.6 million years are considered inactive.

The site is not located within a currently established APEFZ. Based on our reconnaissance, evidence obtained in exploratory borings, and our review of geologic maps and reports, no active or potentially active faults with the potential for surface fault rupture are known to pass directly beneath the site. Therefore, the potential for surface rupture due to faulting occurring beneath the site is considered low. The site, however, is located in a seismically active area and could be subjected to ground shaking in the event of an earthquake on one of the many active Northern California faults.

5.3 Seismicity

In order to evaluate the distance of closest known active faults to the site, we reviewed geologic maps and used the computer program *EQFAULT*, (Version 3, Blake, 2000). Principal references used within *EQFAULT* are Jennings (1975), Anderson (1984) and Wesnousky (1986). The results of the query indicate the Great Valley Fault System and a segment of the Dunnigan Hills Fault, located approximately 6 miles to the west and northwest, respectively, are the closest known active faults to the site.

We used the United States Geological Survey (USGS) *Unified Hazard Tool* (https://earthquake.usgs.gov/hazards/interactive/) to determine the deaggregated seismic source parameters including controlling magnitude and fault distance. The USGS estimated modal magnitude is 6.5, the estimated Peak Ground Acceleration (PGA) for the Maximum Considered Earthquake (MCE) with a 2,475-year return period is 0.53g, and the modal distance is 15 km.

We used the online USGS application *Seismic Design Maps* to evaluate the site class modified, design-level Peak Ground Acceleration (PGA_M) for the site, for use in liquefaction and seismic slope stability analysis. The PGA_M for the site is 0.49g.

While listing PGA is useful for comparison of potential effects of fault activity in a region, other considerations are important in seismic design, including frequency and duration of motion and soil conditions underlying the site. The site could be subjected to ground shaking in the event of a major earthquake along the faults mentioned above or other area faults. However, the seismic risk at the site is not considered to be significantly greater than that of other sites in the area.

5.4 Liquefaction

Liquefaction is a phenomenon in which saturated cohesionless soils are subject to a temporary loss of shear strength due to pore pressure buildup under the cyclic shear stresses associated with earthquakes. Primary factors that trigger liquefaction are: strong ground shaking (seismic source), relatively clean, loose granular soils (primarily poorly graded sands and silty sands), and saturated soil conditions.

The site is not located in a currently established State of California Seismic Hazard Zone for liquefaction. In addition, we are not aware of any reported historical instances of liquefaction in the project area. However, soil and groundwater conditions exist at the site that may be susceptible to seismic-induced liquefaction.

We evaluated potential for liquefaction in sandy layers located below groundwater using the Standard Penetration Test (SPT)-based approach following the methodology of Youd et al (2001) as outlined in CGS Special Publication 117A, *Guidelines for Evaluating and Mitigating Seismic Hazards in California* (CGS, 2008). We used a site class modified Peak Ground Acceleration, PGA_M of 0.49g, an earthquake moment magnitude (Mw) of 6.5, and the AHG groundwater depth of 30 feet (for Boring B1) and 25 feet (for Boring B2).

Our evaluation indicates that sandy soil below groundwater is sufficiently dense to yield a factor of safety against liquefaction greater than 1.3, which is considered to be sufficient resistance against liquefaction per CGS SP117A. Therefore, no special design measures with respect to liquefaction are necessary for the project. Details of our liquefaction analysis are presented in Appendix D.

- 7 -

6.0 SLOPE STABILITY AND SEEPAGE ANALYSIS

Slope stability analyses evaluate the ratio of the resisting forces (predominantly soil shear strength) to the driving forces that would cause a slope failure (predominantly gravity, soil unit weight, slope/strata geometry). The ratio of the summation of driving forces divided by the summation of resisting forces is termed Factor of Safety (FS). A FS of 1.0 indicates that the driving and resisting forces are equal and the slope is a state of impending failure/movement. A FS greater than 1.0 indicates the presence of reserve strength; however, does not guarantee that failure will not occur. Rather, the probability of failure generally decreases as the FS increases. The minimum required FS for slope stability analyses used in this study, consistent with the requirements of the OCSMO and SMRO, are summarized in Table 6.0.

TABLE 6.0
MINIMUM REQUIRED FACTORS OF SAFETY – SLOPE STABILITY ANALYSES

Analysis Condition	Minimum FS ¹			
Mining/Temporary Conditions ¹	1.0			
Permanent (Reclamation) Conditions - Static	1.5			
Permanent (Reclamation) Conditions - Seismic	1.1			
Notes: 1. Minimum FS based on OCSMO Section 10-4.431 and SMRO Section 10-5.530.				

6.1 Stability Analysis Sections

We evaluated slope stability at four locations considered representative of the anticipated mining and reclamation slope conditions for the project. Details of the analytical sections are summarized in Table 6.1.

TABLE 6.1
STABILITY ANALYSIS SECTIONS

Section ID ¹	Description			
S-1	Typical Slope Adjacent to Cache Creek (Phase 4)			
S-2	Typical "Natural" Alluvial Separator (Between Phases 4 and 5)			
S-3	Typical "Natural" Alluvial Separator at PG&E Easement (Between Phases 5 and 6)			
S-4	Typical "Constructed" Alluvial Separator (Between Phases 3 and 4)			
Notes:				
 The approximate 	ate Section locations are shown on the Site Plan, Figure 2.			

6.2 Stability Analysis Material Parameters

To select appropriate material parameters for our slope stability analysis, we used the results of current and previous exploratory borings, laboratory testing, published correlations, engineering judgment, and experience with similar soil conditions on nearby sites. The material parameters used in our analyses are summarized in Table 6.2.

TABLE 6.2
SOIL PARAMETERS FOR SLOPE STABILITY AND SEEPAGE ANALYSIS

Material Type	Total Unit	Total Unit Cohesion, C Weight (pcf) (psf)		Hydraulic Conductivity (ft/sec)	
	weight (pci)	(psi)	(degrees)	Vertical	Horizontal
Overburden Soil	120	250	28	1.5 x 10 ⁻⁷	1.5 x 10 ⁻⁶
Gravel	130	50	38	5.2 x 10 ⁻⁴	5.2 x 10 ⁻³
Clay	120	500	15	1.5 x 10 ⁻⁷	1.5 x 10 ⁻⁶
Reclamation Fill – Silt/Fines	120	250	10	n/a	n/a
"Constructed" Alluvial Separator	120	500	15	n/a	n/a

Discussion of the derivation of the parameters shown in Table 6.2 is presented hereinafter.

Overburden Soil. Shear strength parameters for overburden soil were estimated from published correlations based on soil type and our experience with similar soils in the project area. Based on sensitivity analysis, overburden soil parameters (total unit weight, C, ϕ) have a negligible effect on slope stability for this project. Hydraulic conductivity of the overburden soil was estimated using published correlations and laboratory permeability test results previously performed by Geocon on similar soil types.

Gravel. Shear strength parameters for the gravelly soil deposits are based on laboratory direct shear testing and sampling penetration resistance values measured in current and previous borings at the site. The shear strength parameters derived from direct shear test results are considered to be conservative since the materials tested did not include the gravel portion of the samples. To evaluate the appropriate hydraulic conductivity value of the gravelly soil deposits, we compared the hydraulic conductivity values used by Luhdorff and Scalmanini (L&S) in their hydraulic modeling of the site and values based on correlations developed by Alyamani and Sen, *Determination of Hydraulic Conductivity from Complete Grain-Size Distribution Curves*, Groundwater Journal, July-August 1993. Based on the comparison, the L&S hydraulic conductivity values are approximately 2 to 3 times faster than the values estimated using the Alyamani and Sen grain-size correlation method. In a seepage analysis, faster hydraulic conductivity is more likely to result in adverse seepage conditions (e.g. seepage daylighting on a slope above the level of groundwater). Therefore, for consistency with the L&S hydraulic analysis and as a conservative measure, we have used the L&S hydraulic conductivity values for the gravels in our seepage analysis.

<u>Clay.</u> Total and effective shear strength parameters and permeability of the clay are based on the results of our exploratory borings, laboratory triaxial shear strength testing, published index property correlations, comparisons with local data, engineering judgment, and experience. Hydraulic conductivity of the clay soil was estimated using published correlations and laboratory permeability test results previously performed by Geocon on similar soil types.

Reclamation Fill (Silt/Fines). Unit weight of the reclamation fill/pond fines are based on laboratory unit weight and moisture content tests performed on intact samples of these materials located in the Phase 1 area of the site (Boring B4).

"Constructed" Alluvial Separator. Shear strength parameters for the constructed alluvial separator are based on the results of laboratory triaxial shear strength testing on remolded samples of the proposed material provided by Cemex. Given the proposed placement process, we assumed an average relative compaction of approximately 85%.

For the soil layering/stratigraphy, we assumed a generally flat soil layer stratigraphy consistent with the depositional and erosional geology of the site.

6.3 Groundwater/Surface Water Conditions

In limit-equilibrium slope stability analysis, ponded water against a slope tends to increase global slope stability due to the buttressing effect of the mass of water against the slope. As a conservative measure in our analyses of mining slopes, we modeled groundwater conditions using the ALG levels established for the site. For reclamation conditions, we used the AHG levels established for the site. In our seepage analysis of Section 1 (adjacent to Cache Creek), we used the AHG in conjunction with the 200-year water level in Cache Creek. A summary of the groundwater and surface water levels used is presented in Table 6.3.

TABLE 6.3
GROUNDWATER/SURFACE WATER ELEVATIONS FOR ANALYSIS

Section ID	Location	Average High Groundwater Elevation (Feet, MSL)	Average Low Groundwater Elevation (Feet, MSL)	100-Year Water Level in Cache Creek (Feet, MSL)
S-1	Between Phase 4 and Cache Creek	110	104	126.5
S-2	Between Phases 4 and 5	111	105	
S-3	Between Phases 5 and 6	108	100	
S-4	Between Phases 3 and 4	111	108	

6.4 Seismic Forces for Dynamic (Seismic) Slope Stability Analysis

We analyzed dynamic (seismic) slope stability using a pseudo-static approach in which the earthquake load is simulated by an "equivalent" static horizontal acceleration acting on the mass of the slope. This methodology is generally considered to be conservative and is most often used in current practice.

We calculated the seismic coefficient using the procedures presented in *Special Publication 117A*, *Guidelines for Evaluating and Mitigating Seismic Hazards in California* (CGS 2008). In this procedure, the seismic coefficient is equal to a portion of the design-level PGA_M without the risk coefficient

 $(PGA_M/1.5)$. Assuming a 15-cm displacement threshold, a PGA_M of 0.49g $(PGA_M/1.5 = 0.33)$, a modal distance of 15 km, and a modal magnitude of 6.5, the calculated seismic coefficient is 0.1.

6.5 High-Voltage Power Transmission Line Towers

The project site is traversed by a high-voltage power transmission line between Phase 5 and 6 (Site Plan, Figure 2). The current mining and reclamation plans show a minimum 25-foot setback from the towers to the mining slopes. Specific information related to the tower structures and/or foundations was not available for our review. The towers consist of typical lattice tower structures and are likely supported on conventional cast-in-drilled-hole (CIDH) concrete foundations. Based on our experience on similar projects, in our stability analyses, we assumed maximum vertical and horizontal foundation reaction loads of 150 kips and 25 kips, respectively.

6.6 Slope Stability Analysis and Results

We analyzed slope stability using the computer program SLOPE/W, Version 7.22 (Geo-Slope International) for static and seismic conditions using the Morgenstern-Price method of limit-equilibrium analysis considering circular and block failure modes. For the mining and reclamation conditions, we analyzed for "global", deep-seated failure surfaces that would extend significantly into the dedicated setback areas. We did not evaluate FS for "surficial" or shallow failure surfaces, generally considered to not impact the dedicated setback areas.

Tabulated results of our slope stability analysis (FS against failure) for each slope configuration under the conditions of analysis are summarized in Table 6.6. Graphical representations of the potential critical failure surfaces and parameters used for each stability analysis are presented on Figures C2 through C17 in Appendix C. Results are summarized in Table 6.6.

TABLE 6.6
SLOPE STABILITY ANALYSIS RESULTS

Profile	Slope Details	Operational Condition	Calculated FS	
	T. T	F	Static	Seismic
	 Natural Ground/Alluvial Separator 2H:1V slope to 5 feet below ALG 	Mining – Average Low Groundwater, Low Water Level in Cache Creek	1.5	1.1
Section S-1	1H:1V slope below ALGMaximum slope height = 70 feet	Mining – Average High Groundwater/100-Year Water Level in Cache Creek	1.5	1.2
	 See Figure 3-1 for slope details See Figures C2 through C7 for stability analysis details 	Reclamation – Average High Groundwater/100-Year Water Level in Cache Creek	2.7	2.0
	 Natural Ground/Alluvial Separator 2H:1V slope to 5 feet below ALG 1H:1V slope below ALG 	Mining – Low Groundwater	1.5	1.1
Section S-2	 Maximum slope height = 70 feet See Figure 3-2 for slope details See Figures C8 through C11 for stability analysis details 	Reclamation – High Groundwater	2.6	2.0
Section	 Natural Ground/Alluvial Separator 2H:1V slope to 5 feet below ALG 1H:1V slope below ALG 	Mining – Low Groundwater – No Tower Present	1.5	1.1
S-3	 Maximum slope height = 70 feet See Figure 3-3 for slope details See Figures C12 through C15 for stability analysis details 	Mining – Low Groundwater – Tower with 25-foot setback	1.5	1.1
Section S-4	 Constructed Alluvial Separator 4H:1V slope Maximum slope height = 70 feet See Figure 3-4 for slope details See Figures C16 and C17 for stability analysis details 	"Constructed" Alluvial Separator – Low Groundwater – Backfilled One Side	2.9	1.6

6.7 Seepage Analysis and Results

The proposed north mining/reclamation slopes will be separated (set back) from Cache Creek by a minimum of 200 feet. To model seepage conditions in the north mining/reclamation slopes under influence of a potential 100-year flood event in Cache Creek, we used the computer program SEEP/W, Version 7 (Geo-Slope International) using the geometry at Section S-1, the AHG level (Table 6.3), and the soil hydraulic conductivity values listed in Table 6.2. For stratified soil deposits, the horizontal hydraulic conductivity is greater than the vertical hydraulic conductivity. The typical ratio of vertical to horizontal permeability (Ky/kx) may range from 0.5 (2-times) to 0.1 (10-times) or more. For our analyses, we used a Ky/kx ratio of 0.1 (10-times), which is considered conservative. The purpose of our analysis was to determine if the seepage front would daylight on the slope above the AHG, which could adversely impact slope stability due to increased seepage forces in the slope.

We modeled the transient 100-year water surface elevation (126.5 feet MSL, per Cunningham Engineering, 2016) in Cache Creek for steady-state seepage conditions. The results of our analyses indicate that the seepage front does not intercept the proposed north mining slope at an elevation higher than the AHG level, even when sustained indefinitely. Our seepage analysis results are presented graphically on Figure C1 in Appendix C.

7.0 CONCLUSIONS

7.1 Slope Stability

Based on the results of our study, the proposed mining and reclamation slopes are anticipated to meet the performance standards set forth in the Yolo County *Surface Mining and Reclamation Ordinances* and SMARA.

For the temporary mining slope conditions, static FS against failure ranges from 1.5 to 2.9, which is greater than the minimum required FS of 1.0. For the permanent reclamation slope conditions, static FS against failure ranges from 2.6 to 2.7, which is greater than the minimum required FS of 1.5. Seismic FS for both the mining and reclamation conditions ranges from 1.1 to 2.0, which equals or exceeds the minimum required FS of 1.1.

These results indicate that the project slopes should be globally stable under static and seismic conditions for both temporary mining and permanent reclamation slopes.

7.2 Seepage

Seepage analyses indicates that the seepage front does not intercept the proposed north mining slope at an elevation higher than the average seasonal high groundwater condition, even when sustained indefinitely (steady state conditions). Therefore, anticipated subsurface seepage conditions at the proposed north mining slope under a 100-year Cache Creek flood event are not expected to adversely impact slope stability.

7.3 Pit Capture Potential

Cache Creek floodwaters, when present, do not appear to overtop the south bank of the creek adjacent to the site. Hydrologic and hydraulic models developed by the County and summarized by Cunningham Engineering (2016) indicate that floodwaters are below the top of bank elevations on the south side of the creek. These conditions, combined with the 200-foot setback and the lack of adverse seepage and slope stability conditions based on our analyses suggest that the potential for pit capture is low.

8.0 RECOMMENDATIONS

During mining, exposed gravel slopes are subject to erosion and deterioration and shallow surficial failures should be expected. Such surficial failures should be repaired as soon as practicable prior to additional mining in the immediate area. At a minimum, slope conditions should be observed by an engineering professional at least annually.

In addition, the following measures should be considered:

- Reclamation should occur shortly after mining is complete. Slopes exposed to rain and surface runoff are susceptible to erosion and surficial degradation. Appropriate erosion control measures and best management practice (BMP) devices should be installed to reduce long-term slope degradation.
- Cemex should train onsite workers regarding seismic safety issues, including appropriate actions to be taken during a seismic event.
- During mining operations, Cemex should have sufficient materials and equipment available to repair slopes due to surficial sloughing and/or erosion.

9.0 FURTHER GEOTECHNICAL SERVICES

9.1 Plan Review

We should review the final mining and reclamation plans prior to implementation to ensure that our recommendations have been properly incorporated. If changes are made to the plan during the permitting process or at time of permit approval, then geotechnical re-evaluation may be warranted.

9.2 Future Services

If, during the course of mining and reclamation, sloughing or rills greater than 12 inches deep develop, Geocon should be consulted for mitigation recommendations, as appropriate.

10.0 LIMITATIONS AND UNIFORMITY OF CONDITIONS

The recommendations of this report pertain only to the site investigated and are based upon the assumption that the soil conditions do not deviate from those disclosed in the investigation. If any variations or undesirable conditions are encountered during mining and reclamation, or if the proposed mining and reclamation will differ from that anticipated herein, we should be notified so that supplemental recommendations can be given. The evaluation or identification of the potential presence of hazardous materials or environmental contamination was not part of our scope of services.

Our professional services were performed, our findings obtained, and our recommendations prepared in accordance with generally accepted geotechnical engineering and engineering geology principles and practices used in the site area at this time. No warranty is provided, express or implied. This report is subject to review and should not be relied upon after a period of three years.

11.0 REFERENCES

- 1. Alyamani and Sen, Determination of Hydraulic Conductivity from Complete Grain-Size Distribution Curves, Groundwater Journal, July-August 1993.
- 2. Blake, T.F., EQFAULT, A Computer Program for the Deterministic Prediction of Peak Horizontal Acceleration from Digitized California Faults, Version 2.20, 2000.
- 3. Bryant, W.A., and E.W. Hart, 2007, Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zone Maps, California Geological, Special Publication 42, Interim Revision 2007, 42 pp.
- 4. California Division of Mines and Geology Wagner, D.L., Jennings, C.W., Bedrossian, T.L. and Bortugno, E.J. (compilers), *Geologic Map of the Sacramento Quadrangle*, 1981.
- 5. California Division of Mines and Geology, *Guidelines for Evaluating and Mitigating Seismic Hazards in California*, *Special Publication 117A*, revised and re-adopted September 11, 2008.
- 6. Cunningham Engineering, *Off-Channel Mining Plans, Madison Plant, Yolo County, California* (21 Sheets), November 1995.
- 7. Cunningham Engineering, Off-Channel Reclamation Plans, Madison Plant, Yolo County, California (22 Sheets), November 1995.
- 8. Cunningham Engineering, Conceptual Off-Channel Mining Plan, Cemex Cache Creek, Yolo County, California, January 2018.
- 9. Cunningham Engineering, Off- Reclamation Plan, Cemex Cache Creek, Yolo County, California, January 2018.
- 10. Cunningham Engineering, Cache Creek: Hydraulic Analysis of the Cemex Reach, March 2016.
- 11. Geocon Consultants, Inc., Slope Stability Evaluation, Teichert Shifler Mining Project, Yolo County, California, (Geocon Project No. S9534-05-04), May 25, 2016.
- 12. Geocon Consultants, Inc., Slope Stability Evaluation, Teichert Schwarzgruber Mining and Reclamation Project, Yolo County, California, (Geocon Project No. S9534-06-01), May 10, 2011.
- 13. Geo-Slope International, SEEP/W and SLOPE/W, Version 7-22, 2011.
- 14. Helley, E. J. and Harwood, D. S., *Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierran Foothills, California*, United States Geological Survey Miscellaneous Field Studies map MF-1790, scale 1:62,500, 1985.
- 15. Jennings, C.W., Fault Activity Map of California and Adjacent Areas with Locations and Ages of Recent Volcanic Eruptions, California Division of Mines and Geology Map No. 6, 1994.
- 16. Kleinfelder, Inc., Slope Stability Analysis, Solano Concrete Madison Plant, Highway 505 and Highway 16, Yolo County, California, (File No. 40-2695-01), August 1, 1994.
- 17. Luhdorff and Scalmanini, *Technical Memorandum Estimation of Average High Groundwater Levels, Cemex Madison Plant, Yolo County*, November 30, 2016.
- 18. Luhdorff and Scalmanini, *Technical Memorandum Estimation of Average Low Groundwater Levels, Cemex Madison Plant, Yolo County*, April 26, 2017.
- 19. United States Geological Survey Seismic Design Maps Web Application, http://geohazards.usgs.gov/designmaps/us/application.php.

- 20. United States Geological Survey (USGS), *Unified Hazard Tool* https://earthquake.usgs.gov/hazards/interactive/
- 21. Unpublished reports, aerial photographs, and maps on file with Geocon.
- 22. Yolo County, Surface Mining and Reclamation Ordinances

Photo No. 1 Active Mining Pit

Photo No. 2 High Voltage Transmission Line Easement (between Phases 5 and 6)

PHOTOS NO. 1 & 2

Cemex Cache Creek	
Yolo County, California	

GEOCON Project No. S1294-05-01

February 2018

Photo No. 3 Proposed "Alluvial Separator" Material

Photo No. 4 Proposed "Alluvial Separator" Material

PHOTOS NO. 3 & 4

Cemex Cache Creek		
Yolo County, California		
GEOCON Project No. S1294-05-01	February 2018	

APPENDIX A

APPENDIX A

FIELD EXPLORATION PROGRAM

Our field exploration program was performed on October 12 and 13, 2017, and consisted of drilling four exploratory borings (B1 through B4) at the approximate locations shown on the Site Plan, Figure 2.

Exploratory borings were performed using a truck-mounted, CME 75 drill rig equipped with 6-inch outside diameter (OD) hollow-stem augers. Soil sampling was accomplished using an automatic 140-pound hammer with a 30-inch drop. Samples were obtained with a 3.0-inch OD, split spoon (California Modified) sampler and a 2-inch OD Standard Penetration Test (SPT) sampler. The number of blows required to drive the samplers the last 12 inches (or portion thereof) of the 18-inch sampling interval were recorded on the boring logs.

Subsurface conditions encountered in the exploratory borings were visually examined, classified and logged in general accordance with the American Society for Testing and Materials (ASTM) Practice for Description and Identification of Soils (Visual-Manual Procedure D2488-90). This system uses the Unified Soil Classification System (USCS) for soil designations. The logs depict the soil and geologic conditions encountered and the depths at which samples were obtained. The logs also include our interpretation of the conditions between sampling intervals. Therefore, the logs contain both observed and interpreted data. We determined the lines designating the interface between soil materials on the logs using visual observations, drill rig penetration rates, excavation characteristics and other factors. The transition between the materials may be abrupt or gradual. Where applicable, the field logs were revised based on subsequent laboratory testing. Logs of exploratory borings are presented herein.

UNIFIED SOIL CLASSIFICATION **MAJOR DIVISIONS TYPICAL NAMES** WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES D GW CLEAN GRAVELS WITH LITTLE OR NO FINES POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES GRAVELS GΡ MORE THAN HALF COARSE FRACTION IS LARGER THAN NO.4 SIEVE SIZE Ь SILTY GRAVELS, SILTY GRAVELS WITH MORE THAN HALF IS COARSER THAN NO. 200 SIEVE GM COARSE-GRAINED SOILS GRAVELS WITH OVER 12% FINES CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND GC WELL GRADED SANDS WITH OR SW WITHOUT GRAVEL, LITTLE OR NO FINES CLEAN SANDS WITH LITTLE OR NO FINES POORLY GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES SANDS SP MORE THAN HALF COARSE FRACTION IS SILTY SANDS WITH OR WITHOUT GRAVEL SMALLER THAN NO.4 SM SIEVE SIZE SANDS WITH OVER 12% FINES CLAYEY SANDS WITH OR WITHOUT SC INORGANIC SILTS AND VERY FINE ML SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS INORGANIC CLAYS OF LOW TO MEDIUM SILTS AND CLAYS FINE-GRAINED SOILS MORE THAN HALF IS FINER THAN NO. 200 SIEVE PLASTICITY, CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS CL LIQUID LIMIT 50% OR LESS ORGANIC SILTS OR CLAYS OF LOW OL INORGANIC SILTS, MICACEOUS OR MH DIATOMACEOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS SILTS AND CLAYS СН LIQUID LIMIT GREATER THAN 50% ORGANIC CLAYS OR CLAYS OF MEDIUM ОН TO HIGH PLASTICITY

BORING/TRENCH LOG LEGEND

PT 4 14

HIGHLY ORGANIC SOILS

PEAT AND OTHER HIGHLY ORGANIC

No Recovery	PENETRATION RESISTANCE						
	SAN	D AND GRA	VEL		SILT A	ND CLAY	
Shelby Tube Sample	RELATIVE DENSITY	BLOWS PER FOOT (SPT)*	BLOWS PER FOOT (MOD-CAL)*	CONSISTENCY	BLOWS PER FOOT (SPT)*	BLOWS PER FOOT (MOD-CAL)*	COMPRESSIVE STRENGTH (tsf)
Bulk Sample	VERY LOOSE	0 - 4	0-6	VERY SOFT	0-2	0 - 3	0 - 0.25
	LOOSE	5 - 10	7 - 16	SOFT	3 - 4	4 - 6	0.25 - 0.50
— SPT Sample	MED I UM DENSE	11 - 30	17 - 48	MEDIUM STIFF	5 - 8	7 - 13	0.50 - 1.0
- Modified California Sample	DENSE	31 - 50	49 - 79	STIFF	9 - 15	14 - 24	1.0 - 2.0
▼_Groundwater Level	VERY DENSE	OVER 50	OVER 79	VERY STIFF	16 - 30	25 - 48	2.0 - 4.0
▼ (At Completion)				HARD	OVER 30	OVER 48	OVER 4.0
Groundwater Level (Seepage) "NUMBER OF BLOWS OF 140 LB HAMMER FALLING 30 INCHES TO DRIVE LAST 12 INCHES OF AN 184NCH DRIVE							

MOISTURE DESCRIPTIONS

FIELD TEST	APPROX. DEGREE OF SATURATION, S (%)	DESCRIPTION
NO INDICATION OF MOISTURE; DRY TO THE TOUCH	S<25	DRY
SLIGHT INDICATION OF MOISTURE	25 <u><</u> S<50	DAMP
INDICATION OF MOISTURE; NO VISIBLE WATER	50 <u><</u> S<75	MOIST
MINOR VISIBLE FREE WATER	75 <u><</u> S<100	WET
VISIBLE FREE WATER	100	SATURATED

QUANTITY DESCRIPTIONS

APPROX. ESTIMATED PERCENT	DESCRIPTION
<5%	TRACE
5 - 10%	FEW
11 - 25%	LITTLE
26 - 50%	SOME
>50%	MOSTLY

GRAVEL/COBBLE/BOULDER DESCRIPTIONS

	CRITERIA	DESCRIPTION
ı	PASS THROUGH A 3-INCH SIEVE AND BE RETAINED ON A NO. 4 SIEVE (#4 TO 3")	GRAVEL
ı	PASS A 12-INCH SQUARE OPENING AND BE RETAINED ON A 3-INCH SIEVE (3"-12")	COBBLE
ı	WILL NOT PASS A 12-INCH SQUARE OPENING (>12")	BOULDER

LABORATORY TEST KEY

CP - COMPACTION CURVE (ASTM D1557)

CR - CORROSION ANALYSIS (CTM 422, 643, 417)

DS - DIRECT SHEAR (ASTM D3080)

EI - EXPANSION INDEX (ASTM D4829) GSA - GRAIN SIZE ANALYSIS (ASTM D422)

MC - MOISTURE CONTENT (ASTM D2216)

PI - PLASTICITY INDEX (ASTM D4318)

R - R-VALUE (CTM 301)

SE - SAND EQUIVALENT (CTM 217)

TXCU - CONSOLIDATED UNDRAINED TRIAXIAL (ASTM D4767)

TXUU – UNCONSOLIDATED UNDRAINED TRIAXIAL (ASTM D2850)

UC – UNCONFINED COMPRESSIVE STRENGTH (ASTM D2166)

BEDDING SPACING DESCRIPTIONS

THICKNESS/SPACING	DESCRIPTOR
GREATER THAN 10 FEET	MASSIVE
3 TO 10 FEET	VERY THICKLY BEDDED
1 TO 3 FEET	THICKLY BEDDED
3 %-I NCH TO 1 FOOT	MODERATELY BEDDED
1 ¼-I NCH TO 3 %-I NCH	THINLY BEDDED
%-I NCH TO 1 ¼-I NCH	VERY THINLY BEDDED
LESS THAN %-INCH	LAMINATED

STRUCTURE DESCRIPTIONS

CRITERIA	DESCRIPTION
ALTERNATING LAYERS OF VARYING MATERIAL OR COLOR WITH LAYERS AT LEAST N-INCH THICK	STRATIFIED
ALTERNATING LAYERS OF VARYING MATERIAL OR COLOR WITH LAYERS LESS THAN X-INCH THICK	LAMINATED
BREAKS ALONG DEFINITE PLANES OF FRACTURE WITH LITTLE RESISTANCE TO FRACTURING	FISSURED
FRACTURE PLANES APPEAR POLISHED OR GLOSSY, SOMETIMES STRIATED	SLICKENSIDED
COHESIVE SOIL THAT CAN BE BROKEN DOWN INTO SMALLER ANGULAR LUMPS WHICH RESIST FURTHER BREAKDOWN	BLOCKY
INCLUSION OF SMALL POCKETS OF DIFFERENT SOIL, SUCH AS SMALL LENSES OF SAND SCATTERED THROUGH A MASS OF CLAY	LENSED
SAME COLOR AND MATERIAL THROUGHOUT	HOMOGENOUS

CEMENTATION/INDURATION DESCRIPTIONS

FIELD TEST	DESCRIPTION
CRUMBLES OR BREAKS WITH HANDLING OR LITTLE FINGER PRESSURE	WEAKLY CEMENTED/INDURATED
CRUMBLES OR BREAKS WITH CONSIDERABLE FINGER PRESSURE	MODERATELY CEMENTED/INDURATED
WILL NOT CRUMBLE OR BREAK WITH FINGER PRESSURE	STRONGLY CEMENTED/INDURATED

IGNEOUS/METAMORPHIC ROCK STRENGTH DESCRIPTIONS

FIELD TEST	DESCRIPTION
MATERIAL CRUMBLES WITH BARE HAND	WEAK
MATERIAL CRUMBLES UNDER BLOWS FROM GEOLOGY HAMMER	MODERATELY WEAK
%-INCH INDENTATIONS WITH SHARP END FROM GEOLOGY HAMMER	MODERATELY STRONG
HAND-HELD SPECIMEN CAN BE BROKEN WITH ONE BLOW FROM GEOLOGY HAMMER	STRONG
HAND-HELD SPECIMEN CAN BE BROKEN WITH COUPLE BLOWS FROM GEOLOGY HAMMER	VERY STRONG
HAND-HELD SPECIMEN CAN BE BROKEN WITH MANY BLOWS FROM GEOLOGY HAMMER	EXTREMELY STRONG

IGNEOUS/METAMORPHIC ROCK WEATHERING DESCRIPTIONS

DEGREE OF DECOMPOSITION	FIELD RECOGNITION	ENGINEERING PROPERTIES
SOIL	DISCOLORED, CHANGED TO SOIL, FABRIC DESTROYED	EASY TO DIG
COMPLETELY WEATHERED	DISCOLORED, CHANGED TO SOIL, FABRIC MAINLY PRESERVED	EXCAVATED BY HAND OR RIPPING (Saprolite)
HIGHLY WEATHERED	DISCOLORED, HIGHLY FRACTURED, FABRIC ALTERED AROUND FRACTURES	EXCAVATED BY HAND OR RIPPING, WITH SLIGHT DIFFICULTY
MODERATELY WEATHERED	DISCOLORED, FRACTURES, INTACT ROCK-NOTICEABLY WEAKER THAN FRESH ROCK	EXCAVATED WITH DIFFICULTY WITHOUT EXPLOSIVES
SLIGHTLY WEATHERED	MAY BE DISCOLORED, SOME FRACTURES, INTACT ROCK-NOT NOTICEABLY WEAKER THAN FRESH ROCK	REQUIRES EXPLOSIVES FOR EXCAVATION, WITH PERMEABLE JOINTS AND FRACTURES
FRESH	NO DISCOLORATION, OR LOSS OF STRENGTH	REQUIRES EXPLOSIVES

IGNEOUS/METAMORPHIC ROCK JOINT/FRACTURE DESCRIPTIONS

FIELD TEST	DESCRIPTION
NO OBSERVED FRACTURES	UNFRACTURED/UNJOINTED
MAJORITY OF JOINTS/FRACTURES SPACED AT 1 TO 3 FOOT INTERVALS	SLIGHTLY FRACTURED/JOINTED
MAJORITY OF JOINTS/FRACTURES SPACED AT 4-INCH TO 1 FOOT INTERVALS	MODERATELY FRACTURED/JOINTED
MAJORITY OF JOINTS/FRACTURES SPACED AT 1-INCH TO 4-INCH INTERVALS WITH SCATTERED FRAGMENTED INTERVALS	INTENSELY FRACTURED/JOINTED
MAJORITY OF JOINTS/FRACTURES SPACED AT LESS THAN 1-INCH INTERVALS; MOSTLY RECOVERED AS CHIPS AND FRAGMENTS	VERY INTENSELY FRACTURED/JOINTED

3160 GOLD VALLEY DR - SUITE 800 - RANCHO CORDOVA, CA 95742

PHONE 916.852.9118 - FAX 916.852.9132

KEY TO LOGS

Figure A1

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B1 ELEV. (MSL.) 143 DATE COMPLETED 10/12/17 ENG./GEO. Victor Guardado DRILLER Taber Drilling EQUIPMENT Truck-mounted D120 Diedrich w/6" HSA HAMMER TYPE 140 lb Automatic	PENETRATION . RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
					MATERIAL DESCRIPTION				
- 0 - - 1 - - 2 -	B1-Bulk			CL	ALLUVIUM Medium stiff, damp, light yellow-brown, Lean CLAY, trace silt (Overburden)	_			
- 3 -	B1-3.5					12			
- 5 -	B1-5.5 B1-6.0					7	100.6	10.0	
- 7 - - 8 -	B1-8.0				- white to tan mottling	8	100.0	19.0	
- 9 - - 10 -	B1-8.5			- CL-ML	Medium stiff, damp, light yellow-brown, Silty CLAY				
- 11 - - 12 -	B1-10.5 B1-11.0				The state of the s	_ 9 _ _			
- 13 - - 14 - - 15 -		0	-	SP	Medium dense, damp to moist, black and gray-brown with red mottling, Poorly-graded SAND, few gravel of 2-inch maximum dimension				
- 16 - - 17 -	B1-15.5 B1-16.0	0 0	-		hannes arough, and sile.	_			
- 18 - - 19 -			<u>-</u> 	SW-SM	- becomes gravelly and silty Madium dense maint gray brown with white and block	- - 		 	
20 - 21 -	B1-20.5 B1-21.0			D 14 -01VI	Medium dense, moist, gray-brown with white and black, Well-graded SAND with silt and gravel, fine to medium-grained	34			
- 22 - - 23 -					- rig chatter, grinding	_			
- 24 -									

Figure A2, Log of Boring, page 1 of 4

		SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
GEOCON	SAMPLE SYMBOLS	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B1 ELEV. (MSL.)143	PENETRATION . RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
					MATERIAL DESCRIPTION				
- 25 -	SPT1-25.0				- becomes silty	25			
26 -									
- 27 -	_				- rig chatter	-			
- 28 -	-					-			
- 29 -						F			
- 30 -	_					_			
- 31 -						F			
- 32 -	-					-			
- 33 -	-					L			
- 34 -	_			- <u></u>					
- 35 -	SPT1-35.0		$\left \overline{\Delta} \right $	IVIL	Stiff, moist, yellow-brown with white to tan and black mottling, SILT with Clay, few gravel, trace fine sand	10			
- 36 -						_			
- 37 -	- ■					L			
- 38 -			$\mid \mid$						
- 39 -			11			L			
- 40 -				-GP	Very dense, wet, gray-brown with white, red, and black, Poorly-graded GRAVEL with fine to medium-grained sand, trace silt				
	B1-40.5		-		trace silt	75/11"			
41 -	B1-41.0								
- 42 -			-						
- 43 -									
- 44 -			-						
- 45 -									
- 46 -	-					-			
- 47 -	-					-			
- 48 -	-					-			
- 49 -	-		-			-			

Figure A3, Log of Boring, page 2 of 4

		SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
GEOCON	SAMPLE SYMBOLS	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B1 ELEV. (MSL.) 143 DATE COMPLETED 10/12/17 ENG./GEO. Victor Guardado DRILLER Taber Drilling EQUIPMENT Truck-mounted D120 Diedrich w/6" HSA HAMMER TYPE 140 lb Automatic	PENETRATION . RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
- 50 -					MATERIAL DESCRIPTION				
	SPT-50.0				- no sample, soil heaving				
- 51 -									
- 52 -	-					_			
- 53 -	_					L			
- 54 -	_			SC-SM	orange mottling. Silty clavey SAND with gravel, fine to				
- 55 -	SPT-55.0				medium-grained	34			
- 56 -	-					F			
- 57 -						_			
- 58 -	-		1			_			
- 59 -				-SM	Dense, wet, brown with white, gray, and black, fine to medium-grained Silty SAND				
- 60 -	SPT-60.0			- GP -	Dense, wet, gray-brown with white and black,	49			
- 61 -			-		Poorly-graded GRAVEL with fine to medium-grained sand, few to little silt				
- 62 -	_	. 0				-			
- 63 -	_								
- 64 -	-					-			
- 65 -	-					_			
- 66 -						_			
- 67 -	.	- - -				_			
- 68 -	.		-						
- 69 -			+ +	$-\overline{\text{SP}}$	Dense, wet, yellowish gray-brown with white and red,	<u> </u>			
70 -	CINE 70 0				Poorly-graded SAND with little gravel of 1-inch maximum dimension, few to little clay and silt				
	SPT-70.0					40			
- 71 -									
- 72 -									
- 73 -									
- 74 -						_			

Figure A4, Log of Boring, page 3 of 4

		SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
GEOCON	SAMPLE SYMBOLS	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B1 ELEV. (MSL.) 143 DATE COMPLETED 10/12/17 ENG./GEO. Victor Guardado DRILLER Taber Drilling EQUIPMENT Truck-mounted D120 Diedrich w/6" HSA HAMMER TYPE 140 lb Automatic	PENETRATION . RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
7.5					MATERIAL DESCRIPTION				
- 75 - - 76 - - 77 -						_			
- 78 - - 79 -						_			
- 80 -	SPT-80.0					32			
- 81 - - 82 - - 83 -				- _{SC} -	Dense, moist, yellow-brown with white and black and orange mottling, Clayey SAND				
- 84 - - 85 -	B1-85.0				Hard, moist to wet, yellowish olive-brown with orange mottling, Lean CLAY	50/5"			
					BORING TERMINATED AT 85.5 FEET GROUNDWATER ENCOUNTERED AT 35 FEET BACKFILLED WITH NEAT CEMENT GROUT				

Figure A5, Log of Boring, page 4 of 4

		SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
GEOCON	SAMPLE SYMBOLS	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

MATERIAL DESCRIPTION CL ALLUVIUM									
CL ALLUVIUM	ADDITIONAL TESTS	MOISTURE CONTENT (%)	DRY DENSITY (P.C.F.)	PENETRATION . RESISTANCE (BLOWS/FT.)	ELEV. (MSL.) 130 DATE COMPLETED 10/13/17 ENG./GEO. Victor Guardado DRILLER Taber Drilling Truck-mounted D120 Diedrich	SOIL CLASS (USCS)	GROUNDWATER	SAMPLE INTERVAL & FECOVERY	IN
O B2-Bulk CL ALLUVIUM					MATERIAL DESCRIPTION				
tan mottling, CLAY with silt (Overburden)				_	ALLUVIUM Medium stiff, damp, yellowish light brown with orange and	CL		B2-Bulk	- 1 -
- 2				11 					- 3 -
- 5 - B2-5.5 B2-6.0 - trace black mottling				- 9 -	- trace black mottling				
				_					
- weak cementations - micaceous, trace fine sand - becomes medium stiff - weak cementations - micaceous, trace fine sand - becomes medium stiff		20.7		- 8 -	- micaceous, trace fine sand				- 10 -
				_					- 13 -
- becomes yellowish bluish gray-brown with orange, dark brown, and black mottling, trace mica - B2-15.5 B2-16.0 - B2-15.5 B2-16.0 - B2-15.5 B2-16.0		33.6	87.7	- 8 -	- becomes yellowish bluish gray-brown with orange, dark brown, and black mottling, trace mica				- 15 -
Medium dense, damp to moist, gray-brown with white and black, Well-graded GRAVEL of 1.5-inch maximum dimension, few clay					black, Well-graded GRAVEL of 1.5-inch maximum	$ \frac{1}{GW}$			- 18 -
$\begin{bmatrix} 20 & - \\ 21 & \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 27 & 1 \\ 27 & \end{bmatrix}$				_ 27 	Medium dense, damp to majet gray brown, fine to	<u>Sp</u>	0	B2-20.5	- 20 -
SP Medium dense, damp to moist, gray-brown, fine to medium-grained Poorly-graded SAND, trace silt, few gravel becomes yellow-brown, fine				_	medium-grained Poorly-graded SAND, trace silt, few gravel - becomes yellow-brown, fine	51			
				_		7	·		- 24 -

Figure A6, Log of Boring, page 1 of 4

		SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
GEOCON	SAMPLE SYMBOLS	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B2 ELEV. (MSL.)130	PENETRATION . RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
- 25 -					MATERIAL DESCRIPTION				
- 26 -	B2-25.5 B2-26.0		-		trace claybecomes coarse, trace white and red gravel	31			
- 27 -	_				- rig chatter	-			
- 28 -	-				- few to little clay				
- 29 -	_								
- 30 -	SPT2-30.0		++	- <u></u>	Medium stiff moist vellow-brown with gray and reddish	-6-			
- 31 -			$ \ $		Medium stiff, moist, yellow-brown with gray and reddish orange mottling, Lean to Fat CLAY, trace silt				
- 32 -			1			_			
- 33 -	-		$\mid \cdot \mid$			_			
- 34 -									
- 35 -						13			
- 36 -	B2-35.5 B2-36.0		$\dagger\dagger$	- <u>M</u> L	Medium stiff, moist to wet, yellow-brown with reddish	<u> </u>			
- 37 -			1		orange and gray mottling, SILT with clay				
- 38 -			$\mid \cdot \mid$		- harder drilling, becomes stiffer				
- 39 -			$ \ $		- narder drinning, becomes surrer				
- 40 -			1			_			
- 41 -	-		$\mid \cdot \mid$			_			
- 42 -	-		11	- <u>FP</u> -	Dense moist to wet gray brown with white red and gray				
- 43 -		0	_	51	Dense, moist to wet, gray-brown with white, red, and gray, Poorly-graded SAND, fine to coarse, some gravel				
- 44 -									
- 45 -	SPT2-45.0	. 0				37			
- 46 -						_			
- 47 -			$\dagger \dagger$	-GP	Dense, wet, gray-brown with white and orange, Silty Clayey Poorly-graded GRAVEL	F			
- 48 -			-		1 corry-graded GRA VLL	_			
- 49 -						_			

Figure A7, Log of Boring, page 2 of 4

		SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
GEOCON	SAMPLE SYMBOLS	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B2 ELEV. (MSL.) 130 DATE COMPLETED 10/13/17 ENG./GEO. Victor Guardado DRILLER Taber Drilling EQUIPMENT Truck-mounted D120 Diedrich w/6" HSA HAMMER TYPE 140 lb Automatic	PENETRATION . RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
- 50 -					MATERIAL DESCRIPTION				
- 51 - - 52 -		0		- S P	Dense, moist to wet, gray-brown with white, red, and gray, Poorly-graded SAND, fine to coarse, some gravel		- — — -		
- 53 - - 54 -		. 0							
- 55 -	SPT-55.0	0.0	-			50			
- 56 - - 57 -		0		-GW	Dense, moist to wet, gray-brown with white and black, Silty Clayey Well-graded GRAVEL with sand				
- 58 -						_			
- 59 -		0		SP	Very dense, moist to wet, gray-brown with white, red, and gray, Poorly-graded SAND, fine to coarse, some gravel				
- 60 - - 61 -	SPT2-60.0			SW-SM	Very dense, moist to wet, gray-brown with white and black, Well-graded SAND with silt and gravel	- 33 -	- — — -		
- 62 - - 63 -						_			
- 64 -					- rig chatter	_			
- 65 - - 66 -						_			
- 67 -				<u>C</u> H	Very stiff, moist, gray with reddish orange mottling,		- — — -		
- 68 - - 69 -					micaceous, Fat CLAY, trace silt	_			
- 70 -	B2-70.5					41	97.1	26.1	
- 71 - - 72 -	B2-71.0						71.1	20.1	
- 73 -					- hard drilling	-			
- 74 -									

Figure A8, Log of Boring, page 3 of 4

SAMPLING UNSUCCESSFUL	
	CCESSFUL STANDARD PENETRATION TEST DRIVE SAMPLE (UNDISTURBED)
GEOCON SAMPLE SYMBOLS DISTURBED OR BAG SAMPLE	AG SAMPLE WATER TABLE OR SEEPAGE

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B2 ELEV. (MSL.) DATE COMPLETED10/13/17 ENG./GEO Victor Guardado	PENETRATION . RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
- 75 -		////			MATERIAL DESCRIPTION	38			
- 76 -	B2-75.5 B2-76.0				- becomes bluish-gray with reddish orange mottling	_			
					BORING TERMINATED AT 76.5 FEET GROUNDWATER ENCOUNTERED AT 25 FEET BACKFILLED WITH NEAT CEMENT GROUT				

Figure A9, Log of Boring, page 4 of 4

		SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
GEOCON	SAMPLE SYMBOLS	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE
,				

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B3a ELEV. (MSL.) 121 DATE COMPLETED 10/13/17 ENG./GEO. Victor Guardado DRILLER Taber Drilling EQUIPMENT Truck-mounted D120 Diedrich w/6" HSA HAMMER TYPE 140 lb Automatic	PENETRATION . RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
					MATERIAL DESCRIPTION				
- 0 - - 1 - - 2 -				ML	FILL (SILT/FINES) Soft, dry, yellow-brown, gravelly SILT	_			
- 3 - - 4 -	B3a-3.0				- becomes medium stiff to stiff	_			
- 4 -					BORING TERMINATED AT 4.5 FEET NO GROUNDWATER ENCOUNTERED BACKFILLED WITH SOIL CUTTTINGS				

Figure A10, Log of Boring, page 1 of 1

		SAMPLING UNSUCCESSFUL	STANDARD PENETRATION TEST	DRIVE SAMPLE (UNDISTURBED)
GEOCON	SAMPLE SYMBOLS	DISTURBED OR BAG SAMPLE	CHUNK SAMPLE	▼ WATER TABLE OR SEEPAGE

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	ГІТНОГОСУ	GROUNDWATER	SOIL CLASS (USCS)	BORING B3b ELEV. (MSL.) 121 DATE COMPLETED 10/13/17 ENG./GEO. Victor Guardado DRILLER Taber Drilling EQUIPMENT Truck-mounted D120 Diedrich w/6" HSA HAMMER TYPE 140 lb Automatic	PENETRATION . RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
- 0 -	B3b-Bulk √			ML	MATERIAL DESCRIPTION				
- 1 -				IVIL	FILL (SILT/FINES) Soft, dry, yellow-brown, gravelly SILT	_			
- 2 - - 3 - - 4 - - 5 -	B3b-4.0				- few gravel, becomes medium stiff to stiff	_			
	1	V 1 12			BORING TERMINATED AT 5.5 FEET NO GROUNDWATER ENCOUNTERED BACKFILLED WITH SOIL CUTTTINGS				
					BACKFILLED WITH SOIL CUTTTINGS				

Figure A11, Log of Boring, page 1 of 1

	ON TEST DRIVE SAMPLE (UNDISTURBED)
GEOCON SAMPLE SYMBOLS DISTURBED OR BAG SAMPLE CHUNK SAMPLE WATER TABLE OR SEEPLE	▼ WATER TABLE OR SEEPAGE

DEPTH IN FEET	SAMPLE INTERVAL & RECOVERY	LITHOLOGY	GROUNDWATER	SOIL CLASS (USCS)	BORING B4 ELEV. (MSL.) 128 DATE COMPLETED 10/13/17 ENG./GEO. Victor Guardado DRILLER Taber Drilling EQUIPMENT Truck-mounted D120 Diedrich w/6" HSA HAMMER TYPE 140 lb Automatic	PENETRATION . RESISTANCE (BLOWS/FT.)	DRY DENSITY (P.C.F.)	MOISTURE CONTENT (%)	ADDITIONAL TESTS
- 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 10 11 12 13 14 15	B4-Bulk			ML	MATERIAL DESCRIPTION FILL (SILT/FINES) Medium stiff, dry to damp, yellow-brown with orange mottling, SILT, trace gravel - becomes damp to moist - wood fragments and branches - becomes clayey BORING TERMINATED AT 15.0 FEET NO GROUNDWATER ENCOUNTERED BACKFILLED WITH SOIL CUTTINGS	- 18 - 18 			

Figure A12, Log of Boring, page 1 of 1

SAMPLING UNSUCCESSFUL	_
	CCESSFUL STANDARD PENETRATION TEST DRIVE SAMPLE (UNDISTURBED)
GEOCON SAMPLE SYMBOLS DISTURBED OR BAG SAMPLE	AG SAMPLE WATER TABLE OR SEEPAGE

UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR D	OIVISIONS	LTR	ID	DESCRIPTIONS	MAJOR D	OIVISIONS	LTR	ID	DESCRIPTIONS
	l	GW	200	Well-graded gravels, or gravel sand mixture, little or no fines			МL		Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with
	GRAVEL AND GRAVELLY	GP	0	Poorly-graded gravels, or gravel sand mixture, little or no fines		SILTS AND CLAYS	CL		Inorganic clays of low to
	SOILS	GМ		Silty gravels, gravel-sand-silt mixtures		LL < 50			medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
COARSE GRAINED		GC		Clayey gravels, gravel-sand-clay mixtures	FINE		OL		Organic silts and organic silt-clays of low plasticity
SOILS	SAND	sw		Well-graded sands or gravelly sands, little or no fines	GRAINED SOILS	SILTS	мн		Inorganic silts, micaceous or diatomaceous fine or silty soils, elastic soils
	AND SANDY	SP		Poorly-graded sands or gravelly sands, little or no fines		AND CLAYS LL > 50	СН		Inorganic clays of high plasticity, fat clays
	SOILS	SM		Silty sands, sand and silt mixtures		<i>LL</i> > 50	он		Organic clays of medium to high plasticity
		sc		Clayey sands and clay mixtures	HIGHLY O SOILS	RGANIC	РТ	3) 12	Peat and other highly organic soils

	Standard penetration split spoon sample	LL	Liquid limit
	Modified California sample: 2.5" O.D. 2.0" I.D.	PI	Plasticity index
	Shelby tube sample	%-#200	Percent of soil passing the #200 sieve
	Disturbed bag or bulk sample	R-Value	Resistance value
Ā	Water level observed in boring (at time of drilling)	EI	Percent of swell as measured by UBC Standard No. 29-2
Ā	Water level observed in boring (at given post-drilling time)	С	Soil cohesion in psf
		phi	Angle of internal friction

NOTES:

PROJECT NO.

Blow counts represent the number of blows of a 140-pound hammer falling 30 inches required to drive a sampler through the last 12 inches of an 18-inch penetration, unless otherwise noted.

The lines seperating strata on the logs represent approximate boundaries only. The actual transition may be gradual. No warranty is provided as to the continuity of soil strata between borings. Logs represent the soil section observed at the boring location on the date of drilling only.

The equivalent SPT blow count values can be estimated by multiplying the Modified California Sample blows by 0.6.

KLEINFELDER	
-------------	--

40-2695-01

BORING LEGEND Solano Concrete Madison Plant

PLATE

3

Yolo County, California

	_		• . •							Surface Conditions: Alfalfa Crop			
			npleted			/94 							
		gged I al De	• –				emmell .	· · · · · · · · · · · · · · · · · · ·		Groundwater: Approximately 30' during drilling			
		ELD											
Depth, ft	9	Blows/ft	s + is	ture	·	Strength OLYS		ţ.	Reading	DESCRIPTION			
Dep	Samp	<u>B</u>	200 P	Mois Cont	S	Str	0†her	Tests	D E	Approximate Surface Elevation (ft): 133			
		21								SANDY SILT/SILTY SAND (ML-SM): brown to dark brown, very fine to fine, medium stiff, slightly moist SAND WITH SOME GRAVEL (SM): light			
5 -		31					·			brown, slightly silty, fine to coarse, medium dense, slightly moist GRAVEL WITH SAND (GM): light gray to gray, slightly silty, fine to coarse sand, well rounded gravel to 3/4", medium dense, moist			
10-		26								very moist with 1/2" to 3/4" gravel			
15 -		41						i		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
20-		42								very moist, grades siltier, occasional 2" gravel			
25 -		25						·		SAND (SW): light brown to gray, medium dense, wet			
30				,									
K	Ţ	K	LE	INF	E	L	DER	R		G OF BORING B-1 no Concrete Madison Plant PLATE 1 of 3			
PROJ	EC1	NO.	40-	2695-0	1				Yolo County, California				

KLEINFELDER

Solano Concrete Madison Plant

PROJECT NO. 40-2695-01

Yolo County, California

	F	ELD	<u> </u>	LAI	BORATO	ORY		ID.	<u> </u>		
‡		ŧ	70	e T		T		Reading		DESCRIPTION	
Depth,	Sample	Blows/f†	± s	stur	pre:	د	t s	1			
	Sam	<u>B</u>	P. P. P.	EQ%	Compress. Strength ksf	0ther	Tests	OI E		(Continued from previous plate)	
65 -		26								some pea gravel and sand	
										SANDY CLAY (CL-SC): yellow to light brown, fine to very fine, low plasticity, stif	
-										wet	••
-											
70-		26				c = 110	00				_
-						psf					
75 -											
/3 -		10								SAND (SW): brown to gray, loose, wet	
-									 		
-											
80-									::; ::;;		
		33								CLAY (CL): light brown, very stiff, low plasticity, wet	
				1						parameter, man	
85 -		26									_
] -		20				c = 500	pst				
90-	╛.	50/								OV DV G AND GO D	
		4"								SILTY SAND (SM): brown, silty sand, very dense, wet	7
					ļ			ľ		Terminate boring at 91.5'	
95 -											_
-											
			·		<u>-</u> -			ΙΩ		OF BORING B-1	PLATE
1	KLEINFELDER					DER				Concrete Madison Plant	3 of 3
		• 									4
PROJE	EC1	NO.	40-	2695-0	1			Yolo	O C	County, California	

	Do	ta Co	mpleted		C/0/04				Surface Conditions: Gravel Roadway				
	Lo	gged l	Ву: _		6/8/94 Danea G	emmell			Groundwater: Approximately 25' during drilling				
	To	tal De	pth: _		81.5 feet								
	F	ELD		LA	BORATO	RY		D.					
Depth, ft	Sample	Blows/ft	Lesity 15	Moisture Content %	Compress. Strength ksf	rei	1 s	Reading	DESCRIPTION				
Dei	Sar	80	200	5Ω"	Str ks4	0†her	Tests	PIO	Approximate Surface Elevation (ft): 130				
		40							2" of GRAVEL SANDY SILTY/SILTY SAND (ML-SM): brown to dark brown, very fine to fine with 1/4" subangular gravel, stiff, slightly moist				
5 -		26							medium stiff with 1/4" to 1/2" gravel				
10-		14											
15 -		50							SILTY SAND (SM): brown to dark brown, coarse, with 1/4" to 3/4" subangular and subrounded gravel, dense, slightly moist occasional 1" to 2" gravel				
20-		50/ 5*							light brown to brown, very dense, subrounded gravel to 2", moist				
25 -		46	¥	7					grades siltier, wet				
30-													
	KLEINFELDER								G OF BORING B-2 ano Concrete Madison Plant PLATE 1 of 3 5				
PROJ	EC	Γ NO.	40-	2695-0	1		\dashv	Yolo County, California					

Sample Sa	Dry Density Pof	noisture Content	Compress. Strength ksf	<u></u>		Reading	DESCRIPTION
	PO F	20×		핕	sts		
50			S + X	0†her	Tests	PID	(Continued from previous plate)
68		-					SAND (SW): gray, coarse, some subrounded gravel to 1/4", dense, wet
							some occasional fines and pea sized gravel, very dense
41							no sample - heaving sands
40							same as above
36							0 0
19				c = 0.4 k phi = 34	rsf o		medium dense
	40 36	41 40 36	41 40 36	41 40 36 19	41 40 36 19 c = 0.41	41 40 36	41 40 36 19

KLEINFELDER PROJECT NO. 40-2695-01

Solano Concrete Madison Plant

Yolo County, California

	F	IELD		LAI	BORATO		Ď		
Depth, ft	Sample	Blows/ft	ut F F	isture	Compress. Strength ksf	rat +	Reading	DESCRIPTION	
	Sal	19		Mois Conts	Str	Other Tests		(Continued from previous plate)	
65 -								no sample - heaving sands	-
75 —		40						CLAY (CL): light olive with slight dark orange mottling, very stiff, low plasticity, wet	3
80-		28				c = 0.7 ks	sf	no mottling	
85 –								Terminate boring at 81.5'	
90—									-
95 -									-
	_					<u> </u>	T 4	OC OF BODDIG B 2	T A PRITS
1	H	K	I. R. I	NE	י דר ים ו	DER		G OF BORING B-2 and Concrete Madison Plant	LATE of 3

KLEINFELDER

Solano Concrete Madison Plant

PROJECT NO. 40-2695-01

Solano County, California

	T) =	·	1-4ad		7/20/04				Surface Conditions: Gravel Roadway
		te Coi gged l	mpleted Bv:		6/10/94 Danea G				
	-	tal De	•		81.5 feet				Groundwater: Approximately 25' during drilling
	FI	ELD		LAI	BORATO	RY		00	
Depth, ft	p le	Blows/ft	sity	sture	Compress. Strength ksf	۵	†s	Reading	DESCRIPTION
Dep	Sample	8	7.00 P	주요 주요	Com Str Ksf	Other	Tests	PID	Approximate Surface Elevation (ft): 132
5 -		10							2" of GRAVEL SANDY SILTY/SILTY SAND (ML-SM): brown to dark brown, very fine to fine with subangular and subrounded gravel to 1/2", stiff, slightly moist
10-		20 50/ 5"							grades sandier, gravel to 2"
15 -		50/ 5"							SILTY SAND (SM): brown to dark brown, coarse, with subangular and subrounded gravel to 1/2", very dense, slightly moist occasional 2" gravel
20		35							SAND (SW): brown to gray, coarse with subrounded and subangular gravel to 1/2", dense, very moist
25 -		58	¥ 	7					SILTY SAND (SM): light brown to brown, coarse sand with 1" subangular and subrounded gravel, dense, wet
30—)——————————————————————————————————————								
	KLEINFELDER								G OF BORING B-3 ano Concrete Madison Plant PLATE 1 of 3
PROJ	EC1	NO.	40-	2695-0	1			Yol	o County, California

	F	ELD	1	LAF	BORATO)RY			l		
+	П	±	<u>5</u>					Reading		DESCRIPTION	
Depth,	Sample	Blows/ft	Dry Densit Pof	Moist Conter %	Compress. Strength ksf	0ther	Tests			(0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
	Š		۵۵۵	ĔĞ%	ភ្លួស្ត្	2		OHA		(Continued from previous plate)	
65 -		41									
	П									•	
70-		44									_
-		77								same as above	
								ļ			
75		40								mottled orange and brown	
80		21									_
-		31									
										Terminate boring at 81.5'	
85 –											-
90-			}								
1 -											_
		İ									
95 –		1									-
1											
	KLEINFELDER									OF BORING B-3 Concrete Madison Plant	PLATE 3 of 3
		l **	النقامة	* T 4 T ,	ו עוד עיד	JUN		DUIA	IIV	Concrete Madison Flant	6
PROJE	CI	NO.	40-	2695-0	1			Yolo	C	ounty, California	

	D -	40 CI-	1-4- 1		C/40 '0 :				Surface Conditions: Gravel Roadway			
		te Coi gged l	_		6/10/94 Steve M		·					
			•		76.5 fee				Groundwater: Approximately 25' during drilling			
		ELD			BORATO							
Depth, ft	Sample	Blows/ft	si †y	ture	ress. ngth		s t	Reading	DESCRIPTION			
Dep	Sar	8		Mois Cont	COM S + r	Other	Tests	PIO	Approximate Surface Elevation (ft): 134			
		58							SILTY/SANDY GRAVEL (GM): brown to gray, fine gravel, fine to coarse sand, medium dense, slightly moist			
5 -		50/ 5"						7.77	very dense			
10-		14							SILTY SAND (SM): gray to brown, very fine, stiff, slightly moist			
15 -		54/ 11"							SILTY/SANDY GRAVEL (GM): gray, with silt and trace of clay, fine to coarse, very dense, moist			
20-	·	27							SILTY SAND (SM): brown, fine to coarse, with subrounded and subangular gravel to 1/2", medium dense, very moist			
25 -	3	36	*	-				K	SILTY GRAVEL (GM): gray, fine to coarse sand, subangular to subrounded gravel, with some silt, medium dense, wet			
30								Ć				
K									G OF BORING B-4 PLATE 1 of 3 7			
PROJ	ECT	NO.	40-	2695-0	1			Yolo County, California				

KLEINFELDER

LOG OF BORING B-4
Solano Concrete Madison Plant

2 of 3

PROJECT NO. 40-2695-01 Yolo County, California

7

	F	IELD		LAI	BORATO	DRY		m					
#	П	±	1_	ė _				Reading		DESCRIPTION			
ŧ	p e	Blows/ft	si t	stur tent	ores engt	۲	Ñ	Rea					
Depth,	Sample	<u>8</u>	Deg.	50 %	Compress. Strength ksf	0ther	Tests	PIG		(Continued from previous plate)			
65 -		47								CLAY (CL) Lista A CC			
		•••								CLAY (CL): light brown, trace of fine sand hard, wet	. ,		
70-		46								mottled light brown and orange	_		
-										mothed light brown and orange			
	1												
.	$ \ $												
75 -		34									-		
										The wind of the state of the st			
										Terminate boring at 76.5'			
-													
80 —													
1													
85 -											-		
90-			1										
											-		
-											-		
95 -											-		
											•		
1											*		
		.		-				LO	PLATE 3 of 3				
	Ţ	K	LE]	INF	EL	DER		Solano Concrete Madison Plant 7					
PROJE	PROJECT NO. 40-2695-01							Yolo County, California					
	- TU-2073-UI								- 5.5 County, Cumoi ma				

1	Date C	omplete	d:	7/11/94			Surface Conditions: Dirt Road				
	Loggeo Fotal I	l By: Depth:		Danea G 70 feet	emmell	744.	Groundwater: Approximately 30' during drilling				
	FIELI	5	LA	BORATO	RY						
‡	t + t		sture	ss.		s	Reading	DESCRIPTION			
Dex	Sampl		50%	Compre Streng ksf	Other	Tests	H G	Approximate Surface Elevation (ft): 135			
-	27							SANDY SILT/SILTY SAND (ML-SM): light brown, very fine to fine, some subrounded and subangular gravel 1/2" to 1", medium dense, dry			
5 -	30							SAND WITH SOME GRAVEL (SW): light brown, medium to coarse, trace of fines, with 1/2" to 1" subrounded and subangular gravel, medium dense, dry			
10-	44							SAND AND GRAVEL WITH SILT (SW-SM): light brown to gray, medium to coarse, with subrounded gravel to 1 1/2", brown silty fines, dense, slightly moist			
15	15 - 32							medium dense, moist			
20	20										
25	27							SAND (SW): brown and gray, medium to coarse, medium dense, very moist			
30	<u> </u>	<u> </u>	7								
k	F	KLE	INE	ELI	DER			G OF BORING B-5 PLATE 1 of 3 8			
PROJE	CT NO). 40	-2695-0	1		-	Yolo County, California				

	FI	ELD	L		ORATO			<u>D</u>				
th, ft	p le	Blows/ft	sity	sture . tent	Compress. Strength ksf	٤	\$	Reading	DESCRIPTION			
Depth,	Sample	<u>0</u>	Dens Pcf	50% i.e. e.	Com Str Ksf	0ther	Tests	PIO	(Continued from previous plate)			
65 -		30							CLAYEY GRAVEL AND SAND (GM): grapea gravel, medium to coarse sand, with clay fines, dense, wet	ay yey		
70									Terminate boring at 70' clay present on drill tip			
75 - - -												
80-												
85 —												
90-												
95 –												
	—	K	LE	INF	FEL	D E R	2		OF BORING B-5 to Concrete Madison Plant	PLATE 3 of 3		
PROJ	PROJECT NO. 40-2695-01							Yolo County, California				

Total Depth: 76.5 feet Total Depth: 76.5 feet Total Depth: 76.5 fe		Da	te Cor	npleted	l:	7/1	3/94				Surface Conditions: Dirt Road/Field			
FIELD LABORATORY The state of										Groundwater: _Approximately 40' during drilling				
DESCRIPTION Approximate Surface Elevation (ft): 135 Approximate Surface Elevation (ft): 135 SANDY SILT/SILTY SAND (ML-SM): light brown, very fine to fine, loose, dry grades slightly moist grades slightly sandier SAND (SW): gray, fine to coarse, medium dense, moist with well rounded gravel to 2* CLAYEY GRAVELLY SAND (SC): light brown clay, gray, subangular and subrounded gravel to 1*, medium to coarse sand, dense, very moist LOG OF BORING B-6 Solano Concrete Madison Plant		Total Depth:				<u>76.:</u>	5 feet							
Approximate Surface Elevation (ft): 135 Approximate Surface Elevation (ft): 135 SANDY SILT/SILTY SAND (ML-SM): light brown, very fine to fine, loose, dry slightly moist 20 SAND (SW): gray, fine to coarse, medium dense, moist with well rounded gravel to 2* CLAYEY GRAVELLY SAND (SC): light brown clay, gray, subangular and subrounded gravel to 1*, medium to coarse sand, dense, very moist LOG OF BORING B-6 Solano Concrete Madison Plant		‡ ‡ 5			LA)	ess. gth		RY		Reading	DESCRIPTION			
brown, very fine to fine, loose, dry slightly moist grades slightly sandier SAND (SW): gray, fine to coarse, medium dense, moist with well rounded gravel to 2* CLAYEY GRAVELLY SAND (SC): light brown clay, gray, subangular and subrounded gravel to 1*, medium to coarse sand, dense, very moist LOG OF BORING B-6 Solano Concrete Madison Plant PLATE 1 of 3	Deptl	Samp	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Dens Dens	Moist Conte		Strer	0+her	Tests	1	Approximate Surface Elevation (ft): 135			
slightly moist grades slightly sandier SAND (SW): gray, fine to coarse, medium dense, moist with well rounded gravel to 2* CLAYEY GRAVELLY SAND (SC): light brown clay, gray, subangular and subrounded gravel to 1*, medium to coarse sand, dense, very moist LOG OF BORING B-6 Solano Concrete Madison Plant PLATE 1 of 3			11											
20 SAND (SW): gray, fine to coarse, medium dense, moist with well rounded gravel to 2* CLAYEY GRAVELLY SAND (SC): light brown clay, gray, subangular and subrounded gravel to 1*, medium to coarse sand, dense, very moist LOG OF BORING B-6 Solano Concrete Madison Plant PLATE 1 of 3	5 -	-	13								slightly moist			
SAND (SW): gray, fine to coarse, medium dense, moist with well rounded gravel to 2" CLAYEY GRAVELLY SAND (SC): light brown clay, gray, subangular and subrounded gravel to 1", medium to coarse sand, dense, very moist LOG OF BORING B-6 Solano Concrete Madison Plant PLATE 1 of 3	10-	-	20								grades slightly sandier			
with well rounded gravel to 2" CLAYEY GRAVELLY SAND (SC): light brown clay, gray, subangular and subrounded gravel to 1", medium to coarse sand, dense, very moist LOG OF BORING B-6 Solano Concrete Madison Plant PLATE 1 of 3	15 -	-	20			The state of the s								
CLAYEY GRAVELLY SAND (SC): light brown clay, gray, subangular and subrounded gravel to 1", medium to coarse sand, dense, very moist LOG OF BORING B-6 Solano Concrete Madison Plant PLATE 1 of 3	20-	58									[[:]]			
LOG OF BORING B-6 Solano Concrete Madison Plant PLATE 1 of 3	25 -		32								brown clay, gray, subangular and subrounded gravel to 1", medium to coarse sand, dense,			
KLEINFELDER Solano Concrete Madison Plant	30-													
PROJECT NO. 40-2695-01 Yolo County, California		KLEINFELDER							R	Sol	ano Concrete Madison Plant 1 of 3 9			

	FI	ELD		LAI	ORATO			B	
Depth, ft	Sample	Blows/ft	Je ity	isture itent	Compress. Strength ksf	Te T	Tests	Reading	DESCRIPTION
<u>a</u>	Sai	<u><u></u></u>	Dens Pof	50%	Str Ks+	0ther	Tes	H	(Continued from previous plate)
65 -		52							occaisional gravel to 1 1/2", grades siltier
70-									no sample - flowing liquid clay/silt out of auger
75 -		22							CLAY (CL): light brown, trace of gray
80									mottling, medium plasticity, very stiff, wet Terminate boring at 76.5'
85 -									
90-									
95 -									
					7377			LO	G OF BORING B-6 PLATE

M	KLEINFELDER	
---	-------------	--

Solano Concrete Madison Plant

3 of 3

PROJECT NO. 40-2695-01

Yolo County, California

9

	Da	te Cor	npleted	:	7/14/94			<u> </u>	Surface Conditions: Dirt Road
		gged I tal De	• –		Danea G 81.5 feet				Groundwater: Approximately 30' during drilling
h, ft	٥	ELD ‡	i + c	LAI	SORATO		v	Reading	DESCRIPTION
Dep†h,	Sampl		Por Port	Aois Conts	Compre Streng ksf	0†her	Tests	PIO	Approximate Surface Elevation (ft): 129
		28							SANDY SILT/SILTY SAND (ML-SM): light brown to brown, very fine to fine, medium dense, dry
5 -	-	9							slightly moist
10-	-	24							SILTY CLAY/CLAYEY SILT (ML-CL): mottled gray and yellow, low plasticity, slightly moist
	-								SILTY SAND (SM): gray to brown, fine to medium, medium dense, slightly moist
15 -		38							with subangular gravel to 3/4", grades cleaner
20-		42							SILTY GRAVEL AND SAND (GM): gray subrounded and subangular gravel to 3/4", medium to coarse sand, dense, slightly moist
25 -		31							with gravel to 2", very moist
30-			<u> </u>	<u>7</u>					
PRO,	TEC.			I N]		DER	L	Sol	OG OF BORING B-7 lano Concrete Madison Plant lo County, California

	F	IELD		LAI	BORATO	RY		<u>ه</u>						
#		++	₹ 2	a+-	Compress. Strength ksf			Reading	DESCRIPTION					
Depth,	Sample	Blows/ft	Dry Density Pcf	istu Inter	mpre reng	0ther	Tests							
	Sa	B	20.8	<u> ଟୃପ୍ନ</u>	요 * \$ *	<u> </u>		OIG	(Continued from previous plate)					
65 -]								no sample - flowing sand and gravel					
]													
	1								2 .	-				
70-														
"	-								2					
	1													
	1									•				
75 -		35				c = 56	0 psf		SILTY CLAY (CL): light olive to light brown,					
							•		very fine to fine, low plasticity, very stiff, wet	•				
	-													
80-														
80	-	40												
	\prod								Terminate boring at 81.5'					
]													
85 -	+									_				
	$\left. \cdot \right $:									
90-	1													
90-]													
	$\left\{ \ \right $													
]													
95 -	$\left. \left \; \right \right.$									_				
]									•				
				İ										
_					1									
								LO	G OF BORING B-7					
		K	LE	INI	FEL	DEF	₹	Sol	ano Concrete Madison Plant					
PRO	PROTECT NO. 40 2605 01							Yolo County, California						
	PROJECT NO. 40-2695-01								Yolo County, California					

									Surface Conditions: Dirt Road/Creek Levee				
			-		7/14/94		7 						
		gged I	_		Danea G				Groundwater: Approximately 25' during drilling				
		tal De	ptn: _		61.5 feet								
th, ft	aı	ELD + +/s		ture	Compress. Strength Ksf	I	·ν.	Reading	DESCRIPTION				
Depth,	Sample		P. C. C.	Mois Conts	Comp Stre Kst	0ther	Test	E E	Approximate Surface Elevation (ft): 126				
	-	70							SILTY SAND/SANDY SILT (SM-ML): light brown, fine to medium silty sand, some subangular and subrounded gravel to 1", very dense, dry				
5 -	-	41							SAND AND GRAVEL (SW): dark brown, fine to medium sand, subrounded and subangular gravel to 1", trace of silty fines, dense, slightly moist				
10-	-	40							sand grades coarser				
15 -	-	36							SILTY SAND AND GRAVEL (SM): dark brown to gray, medium to coarse sand, light brown silty fines, subangular pea gravel to 3/4", occasional 2" gravel, slight cementation,				
20 —		77							very dense, moist				
25 -		40	Z	7					wet, grades gravelly				
30-													
	\	K	LE	IN	FEL	DEI	R	LOG OF BORING B-8 Solano Concrete Madison Plant PLATE 1 of 2 11					
PRO.	ROJECT NO. 40-2695-01							Yolo County, California					

	F	IELD		LAI	BORATO	RY		00				
# 4	9	744	₹	ture	ess. gth			Reading	DESCRIPTION			
Depth,	Samp	Blows/ft	Dry Densi Pof	W +-	Compress. Strength ksf	Other	Tests	PID R	(Continued from previous plate)			
	,			20.	20,3	- 0		<u>a. a.</u>	no sample - flowing sands			
	-											
35 -		44										
						-			CLAY (CL): light brown, trace of gray mottling, low to medium plasticity, hard, wet			
40-		42							grades sandy			
	-											
45 -		40							no more sand, trace of orange mottling			
									no more said, trace or orange mottring			
	$\left \cdot \right $											
50-		49										
		49										
]											
55 -												
		38										
	$\left\{ \ \right $											
60		41							grades olive gray with slight orange mottling			
-								ĺ	Terminate boring at 61.5'			
_	Ш											
					 		<u>1</u>	TO	COL BODDIC D O			
	F	K	LE	INE	EL	DER			G OF BORING B-8 no Concrete Madison Plant PLATE 2 of 2			
DD A								Yolo County, California				
PKOJ	EC	T NO.	40	-2695-0)1			1 010	County, Camornia			

			_						Surface Conditions: Creek Levee				
			npleted	:	7/15/94	·			- Crock Levee				
		gged I	-			<u>Semmell</u>			Groundwater: Approximately 20' during drilling				
		tal De	pth: _		56.5 fee								
Depth, ft		ELD ‡	si †y	EAT + Car + Ca + Ca + Ca + Ca + Ca + Ca + Ca + Ca	Compress. Strength		s +	Reading	DESCRIPTION				
Dep	Sampl	Blows	Den.	50% - 60%	CO S+r- KA+	0ther	Tests	PID	Approximate Surface Elevation (ft): 124				
5 -	-	69							SILTY SAND/SANDY SILT (ML-SM): light brown, fine to medium fine silty sand, with subangular and subrounded gravel to 1 1/2", very dense, dry				
	-	50/ 5"							SILTY SAND AND GRAVEL (SM): dark brown, fine to medium silty sand, subangular and subrounded gravel to 1 1/2", very dense, slightly moist				
10-		50/ 5"											
15 -		50/ 5"							SILTY GRAVEL AND SAND (GM): brown silty fines, dark brown to gray, fine to medium coarse sand, gray, subangular and subrounded gravel to 3", very dense, moist				
20-		19	7	7					wet				
25 -		66							subrounded gravel grades to 1"				
30-									0.1				
								TA	G OF BORING B-9 PLATE				
K	7	K	LE	INI	FEL	DEF	2	Solano Concrete Madison Plant					
PROJ	PROJECT NO. 40-2695-01								Yolo County, California				

				-					Surface Conditions:Disked Field				
	Da	te Cor	npleted	:	7/18/94				Disked Field				
		gged I	_		Danea G				Groundwater: Approximately 36' during drilling				
ļ	,		pth: _		81.5 fee			•					
th, ft		ELD ‡	± is	LAI en ten ten ten ten ten ten ten ten ten t	Compress. Strength Strength ksf	1		read ing	DESCRIPTION				
Depth,	Sample		Pc. 3	50% 20%	Comp Stre Ksf	Other Tests	E L	D H	Approximate Surface Elevation (ft): 144				
5 -		22							SANDY SILT/SILTY SAND (SM-ML): light brown, very fine to fine, medium dense, dry SILTY SAND AND GRAVEL (SM): light				
10-									brown to brown, fine to medium sand, gray subangular pea gravel, occasional 3/4", medium dense, slightly moist				
15 -		32 49							more subrounded and subangular gravel, grades dense, moist				
20-									SILTY GRAVEL AND SAND (GM): brown to gray, fine to coarse sand, gray, subrounded gravel to 2", dense, moist				
25 -		50/ 5"							occasional cobble				
		28							dark orange sand lenses				
30-	<u> </u>							l					
		. .		· · · · · · · · · · · · · · · · · · ·			1		G OF BORING B-10 PLATE 1 of 3				
	7	K	LE	INI	FEL	DER	Solano Concrete Madison Plant						
PRO.	PROJECT NO. 40-2695-01								Yolo County, California				

	F	IELD		LAI	BORATO	DRY	ور				
Depth, ft	a) du	Blows/ft	y isity	sture itent	Compress. Strength ksf	rā ÷	Reading	DESCRIPTION			
Der	Samp		20.0	₹0% C	Com Str Ksf	Other	PID	(Continued from previous plate)			
	1	45						SAND AND GRAVEL (SW): brown to gray, medium to coarse, dense, very moist			
35 -		34	Ž	7				SILTY GRAVEL AND SAND (GM): brown fines, gray-brown, medium to coarse sand, subrounded gravel to 2", medium dense, wet			
40		21						CLAY (CL): brown to olive, very fine, low plasticity, very stiff, wet			
45 -		12				c = 502 psf		trace of yellow mottling, grades stiff			
50-		20						slight gray mottling			
55 -		54						CLAYEY SAND AND GRAVEL (SC): olive-brown fines, gray, medium to coarse sand, gray pea gravel, dense, wet			
60		20				c = 285 psf phi = 23° slightly disturbed		SAND AND GRAVEL (SW): dark brown, medium to coarse sand, trace of silty fines, medium dense, wet			
				<u> </u>							
K		K	LE	INF	FEL	DER	LOG OF BORING B-10 Solano Concrete Madison Plant PLATE 2 of 3 13				
PROJ	PROJECT NO. 40-2695-01							Yolo County, California			

	F	IELD		LAF	ORATO			<u> </u>				
#		#	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	rre +c	ess. J†h			Reading	DESCRIPTION			
Depth,	Sample	Blows/ft	Dry Density Pcf	oisti ontei	Compress. Strength ksf	0ther	Tests	PID Re				
65	S.	<u> </u>	مَ مَ	ĔŰΧ	<u> </u>	Ò	<u> </u>	2.2	(Continued from previous plate)			
70-		81							no sample - flowing sands			
75		50/ 5"							CLAYEY SAND (SC): olive clayey fines, brown to gray, medium to coarse sand, very			
	1	!							dense, wet			
80-		50/							GRAVELLY CLAY (GC-CL): olive clay, gray pea gravel, very dense, wet			
		5"							Terminate boring at 81.5'			
85												
90-	1								-			
95												
	KLEINFELDER								G OF BORING B-10 ano Concrete Madison Plant 13			
PROJECT NO. 40-2695-01								Yolo County, California				

	Data	Con	ıpleted		7/10					Surface Conditions: Farm Road
		ged B	•				emmell			
		-	oth:							Groundwater: Approximately 35' during drilling
	FIE		_			АТО		-		
#		Blows/ft	si ty	sture tent		Strength		\$	Reading	DESCRIPTION
Dep			Dry Den Pcf	50%	ق	Str ksf	0†her	Tests	PID	Approximate Surface Elevation (ft): 130
	2	29								SANDY SILT/SILTY SAND (SM-ML): light brown, very fine to fine, very stiff, dry
5 -	8	3								slightly moist, trace of subangular pea gravel
10	5	58								SILTY GRAVEL/GRAVELLY SILT (GM-ML): dark brown, very fine to fine, gray subangular pea gravel, low plasticity, dense, moist more subrounded and subangular gravel, grades dense, moist
15 -	3	39								SAND AND GRAVEL (SW): dark brown to gray, medium to coarse sand, gray, subangular gravel to 3/4", dense, moist
20		60/ i*							and the state of t	
25	4	1		700						GRAVEL AND SAND (GW): brown, medium to coarse sand, gray subrounded gravel to 1 1/2", occasional cobble, dense, moist
30—						!			l	<u> </u>
PROJI				I N 1		 E L	DEF	R	Sol	OG OF BORING B-11 ano Concrete Madison Plant lo County, California

	F	IELD		LAI	ORATO	RY		<u>p</u>				
Depth, ft	Sample	Blows/ft	y eity	isture itent	Compress. Strength ksf	Ē	\$ 15	Reading		DESCRIPTION		
, ie	San	918	Den Pof	50% 100%	Con Str ksf	Other	Tests	日집		(Continued from previous plate)		
65 -	-	50/ 5"				c = 150 phi = 3 slightly disturbe	320			SAND (SW): gray, medium to coarse sand, trace of silty fines, very dense, wet		
70-	1									no sample - flowing sands		
75 -	-	34								CLAY (CL): olive, trace of dark orange mottling, very fine, low plasticity, very stiff, wet CLAYEY SAND (SC): olive clayey fines, brown to gray, medium to coarse sand, very dense, wet		
80-		74								some dark orange mottling, grades silty		
85 -		56								CLAY (CL): gray, very fine, low plasticity, hard, wet Terminate boring at 86.5'		
90-												
95 -												
				· -				10	<u>~ </u>	OF DODING D 44		
K	V	K	LΕ	INI	FEL	DER	t	LOG OF BORING B-11 Solano Concrete Madison Plant PLATE 3 of 3				
PROJ	PROJECT NO. 40-2695-01								Yolo County, California			

Date Completed: 7/20/94	Surface Conditions: Farm Field				
Logged By: Danea Gemmell	Groundwater: Approximately 30' during drilling				
Total Depth: 71.5 feet	Approximatery 50 during drilling				
FIELD LABORATORY					
Sample Sample Blows/ft Dry Density Pcf Moisture Content % Compress. Strength ksf Other	DESCRIPTION DESCRIPTION				
	Approximate Surface Elevation (ft): 127				
5 — 30	SANDY SILT/SILTY SAND (SM-ML): brown, very fine to fine, medium dense, dry				
23	SILTY GRAVEL AND SAND (GM): brown fines, brown to gray, fine to coarse sand, gray subrounded gravel to 1", medium dense, slightly moist				
15 - 24	SAND (SW): brown to gray, medium to coarse, medium dense, slightly moist				
40	grades with subangular and subrounded gravel to 1/2"				
50/5"	moist, some cemented gravel				
30					
_					
KLEINFELDER	LOG OF BORING B-12 Solano Concrete Madison Plant PLATE 1 of 3 15				
PROJECT NO. 40-2695-01	Yolo County, California				

FIELD	LABORATORY	<u>B</u>					
Depth, ft Sample Blows/ft	Dry Density Pof Moisture Content % Compress. Strength ksf	Other Tests PID Reading	DESCRIPTION				
	X C C C C C C C C C C C C C C C C C C C	Tes.	(Continued from previous plate)				
50/5"			SILTY GRAVEL AND SAND (GM): brown silty fines, brown to gray, fine to coarse sand, gray subangular and subrounded gravel to 1", very dense, wet				
60			grades siltier, gravel to 1 1/2"				
63		= 50 psf = 46°	INTERBEDDED CLAY (CL)/SILTY SAND AND GRAVEL (SM): approximately 6" thick beds - olive clay with dark orange mottling, low plasticity, stiff, wet/brown silty fines, gray, medium to coarse sand, gray, subangular pea gravel, very dense, wet				
43			pea graver, very dense, wet				
53	c =	- 665 psf	CLAY (CL): dark gray, low to moderate plasticity, hard, moist				
74			grades dark gray-olive				
85			grades olive, wet				
		LC	OG OF BORING B-12 PLATE 2 of 3				

Yolo County, California

15

PROJECT NO.

40-2695-01

	F	IELD		LAI	BORATO			B			4.
Depth, ft	Sample	Blows/ft	Ory Density Pcf	sture	Compress. Strength ksf	<u>.</u>	٠ د	Reading		DESCRIPTION	
Dep	San	BIG		50%	Com Str Ksf	0ther	Tests	PIO		(Continued from previous plate)	
65 -	1 7 7 1	83								strong cementation	
70 —		50/ 5"								grades silty, very fine to fine	
	1								7777	Terminate boring at 71.5'	
75 -											
	-										
80 —											
	-		·								
85 -											
90											
-											
95 -											
-											
	<u></u>				1				1		
		K	LE	INE	EL	DER	2			OF BORING B-12 Concrete Madison Plant	PLATE 3 of 3

PROJECT NO. 40-2695-01

LOG OF BORING B-12 Solano Concrete Madison Plant Yolo County, California

15

						-7-11		-	S. C. D. P. C. D. D. C.			
	Da	te Cor	npleted	:	7/21/94				Surface Conditions: Gravel Road			
	Lo	gged I	Ву: _		Danea G	emmell			Groundwater: Approximately 30' during drilling			
	To	tal De	pth:		71.5 fee	<u> </u>			Approximately 30 during drining			
_	F	ELD		LAI	BORATO	RY		<u> </u>				
Depth, ft	ample	ows/f†	January Paris	isture Itent	Compress. Strength ksf	rəc	\$	Reading	DESCRIPTION			
o et	San	8	50.0	ξΩ% 20%	Str. kst	0ther	Tests	PID	Approximate Surface Elevation (ft): 127			
5 -	-	37							SILTY SANDY GRAVEL (GM): brown, very fine to medium sand, gray subangular and subrounded gravel to 1", dense, dry			
	-	6							CLAYEY SILT (ML): brown, very fine to fine, low plasticity, medium stiff, moist			
10-		20							SAND (SW): brown, fine to coarse, some			
15 -	-								subangular pea gravel, medium dense, moist			
-	-	67							GRAVEL AND SAND (GW): gray pea gravel to 3/4", brown to gray, fine to coarse sand, trace of brown silt, very dense, moist			
20 —		50/ 5"							grades with silt			
25 -		64		-					SILTY GRAVEL AND SAND (GM): brown silty/sandy fines, fine to medium, gray subangular gravels to 3/4", very dense, very moist			
30 —	<u>L l</u>		<u> </u>	<u>/</u>		<u></u>		<u> </u>	[O].			
	\.	K	LE	INI	FEL	DEI	R		oG OF BORING B-13 ano Concrete Madison Plant			
PRO,	PROJECT NO. 40-2695-01							Yolo County, California				

KLEINFELDER

LOG OF BORING B-13 Solano Concrete Madison Plant

2 of 3

Yolo County, California

16

PROJECT NO.

40-2695-01

	F	ELD		LAF	ORATO			5					
Depth, ft	Sample	Blows/ft	Ory Density Pof	sture Itent	Compress. Strength ksf	د	د	Reading	DESCRIPTION				
Dep	Sar	80	Der Pof	30 20 20	Str	Other	Tests	PIO	(Continued from previous plate)				
65 -		76 50/ 5"							grades olive-brown Terminate boring at 71.5'				
75 -	ı												
80 —	1 1 1 1 1												
85 -													
9 0 —													
95 -													
			LE					LO	OG OF BORING B-13 PLAT 3 of 3	E			

KLEINFELDER	Solano Concrete Madison Plant	3 of 3 16
PROJECT NO. 40-2695-01	Yolo County, California	

APPENDIX B

APPENDIX B LABORATORY TESTING PROGRAM

Laboratory tests were performed in accordance with generally accepted test methods of the American Society for Testing and Materials (ASTM) or other suggested procedures. Selected soil samples were tested for their grain size distribution, plasticity characteristics, maximum dry density/optimum moisture content, and shear strength parameters. Laboratory test results are presented on the following pages.

								Sheet 1 of 1
Sample ID	Depth (feet)	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Water Content (%)	Dry Density (pcf)
B1-Bulk (0-5')	0							
B1-6	6						19.0	100.6
SPT1-25.0	25					5.1		
SPT1-55.0	55					21.7		
B2-3	3	41	20	21				
B2-10.5	10.5						20.7	
B2-16	16						33.6	87.7
B2-25.5	25.5					1.5		
SPT2-60.0	60					6.2		
B2-70.5	70.5						26.1	97.1

JS LAB SUMMARY GEOTECH 2 S1294-05-01 CEMEX CACHE CREEK PLANT.GPJ US_LAB.GDT 11/6/17

Geocon Consultants
3160 Gold Valley Drive, Suite 800
Rancho Cordova, CA 95742
Telephone: 9168529118

Summary of Laboratory Results

Project: Cemex Cache Creek Location: Madison, California

Number: S1294-05-01

	Sample No.	Liquid Limit	Plastic Limit	Plasticity Index	% Pass #200 Sieve	Unified Soil Classification Description	Preparation Method
•	B2-3	41	20	21		Lean CLAY (CL)	dry

Geocon Consultants 3160 Gold Valley Drive, Suite 800 Rancho Cordova, CA 95742 GEOCON Telephone: 9168529118

ATTERBERG LIMITS (ASTM D4318)

Project: Cemex Cache Creek Location: Madison, California

Number: S1294-05-01

COBBLES	GRA	VEL		SAND)	SILT OR CLAY
	coarse	fine	coarse	medium	fine	SILT OR CLAY

5	Sample No.		CI	assification	L	L PL	PI	Сс	Cu	
	SPT1-25.0	Well-	graded SAND	with silt and g	ravel (SW-SM)			2.01	18.8
	SPT1-55.0		Silty, clayey S	AND with grave						
	B2-25.5		Poorly-				1.04	5.2		
★ ★ ★ ★	SPT2-60.0	Well-	graded SAND	with silt and g)			1.13	31.0	
					_					
	Sample No.	D100	D60	D30	D10	%Gravel	%Sand	%Si	It %	6Clay
5 ●	SPT1-25.0	25	5.23	1.708	0.278	43.7	51.2	5.1		
5	SPT1-55.0	25	2.651	0.176		28.7	49.6		21.7	
	B2-25.5	25	1.718	0.766	0.328	10.7	0.7 87.8		1.5	
*	SPT2-60.0	25	5.735	1.097	0.185	45.5	48.4		6.2	
★										

Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, CA 95742

GRAIN SIZE DISTRIBUTION (ASTM D422, D6913)

Project: Cemex Cache Creek Location: Madison, California

Number: S1294-05-01

Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, CA 95742 Telephone: (916) 852-9118

MOISTURE-DENSITY RELATIONSHIP

Project: Cemex Cache Creek Location: Madison, California

Number: S1294-05-01

CEMEX CACHE CREEK PLANT

G1294-52-01 Date: Thursday, October 19, 2017 **By:** TG

Sample No.: B1 @ 40.5 Natural or Remold: Natural

Description: SW-GRAY (F-C) SAND WITH A TRACE OF FINE

Remarks: GRAVEL AND SILT

^{*} Degree of saturation calculated with a specific gravity of 2.65

0.0100 0.0100

Rate (in/min) 0.0100

DIRECT SHEAR B1 @ 40.5 Figure B5

Sample Description	
Boring Number	B1
Sample Depth (feet)	10.00
Material Description	Dark Yellowish Brown Sandy lean CLAY
Initial Conditions at Start of Test	
Height (inch) average of 3	4.93
Diameter (inch) average of 3	2.37
Moisture Content (%)	19.9
Dry Density (pcf)	101.4
Estimated Specific Gravity	2.7
Saturation (%)	81.1
Shear Test Conditions	
Strain Rate (%/min)	1.0004
Major Principal Stress at Failure (psf)	2580
Strain at Failure (%)	4.5
Test Results	
Unconfined Compressive Strength (tons/ft ²)	1.3
Unconfined Compressive Strength (lbs/ft ²)	2584
Shear Strength (tons/ft ²)	0.6
Shear Strength (lbs/ft ²)	1292

Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, California 95742 GEOCON Telephone: (916) 852-9118

Fax: (916) 852-9132

Unconfined Compressive Strength (ASTM D2166)

Project: Cemex Cache Creek Location: Yolo County, California

Number: S1294-05-01

Sample Description	
Boring Number	B1
Sample Depth (feet)	71.00
Material Description	Dark greenish gray lean CLAY
Initial Conditions at Start of Test	
Height (inch) average of 3	4.89
Diameter (inch) average of 3	2.40
Moisture Content (%)	27.6
Dry Density (pcf)	97.1
Estimated Specific Gravity	2.8
Saturation (%)	98.9
Shear Test Conditions	
Strain Rate (%/min)	0.9991
Major Principal Stress at Failure (psf)	6450
Strain at Failure (%)	5.0
Test Results	
Unconfined Compressive Strength (tons/ft ²)	3.2
Unconfined Compressive Strength (lbs/ft ²)	6448
Shear Strength (tons/ft ²)	1.6
Shear Strength (lbs/ft ²)	3224

GEOCON Telephone: (916) 852-9118

Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, California 95742

Fax: (916) 852-9132

Unconfined Compressive Strength (ASTM D2166)

Project: Cemex Cache Creek

Location: Yolo County Number: S1294-05-01

Total Normal Stress, ksf ————
Effective Normal Stress, ksf ————

Type of Test:

CU with Pore Pressures **Sample Type:** Remold

Description:

Specific Gravity= 2.7

Remarks: Test specimen remolded to approximate 90% of an ASTM D1557 proctor at +2% over

optimum moisture content.

Figure B8

	Sar	nple No.	1	2	3	
	Initial	Water Content, % Dry Density, pcf	11.5 109.9	11.6 109.8	11.5 109.9	
		Saturation, %	58.1	58.4	58.1	
		Void Ratio	0.5333	0.5345	0.5333	
3		Diameter, in.	2.81	2.81	2.81	
		Height, in.	5.66	5.66	5.66	
	At Test	Water Content, %	19.8	19.8	19.7	
		Dry Density, pcf	109.9	109.8	109.9	
•		Saturation, %	100.0	100.0	99.9	
		Void Ratio	0.5333	0.5345	0.5333	
		Diameter, in.	2.81	2.82	2.82	
		Height, in.	5.64	5.63	5.61	
	Stra	ain rate, in./min.	0.120	0.013	0.011	
	Bac	ck Pressure, psi	50.00	50.00	50.00	
	Cel	l Pressure, psi	56.94	63.89	77.78	
	Fail	l. Stress, ksf	2.14	2.61	4.33	
	Т	otal Pore Pr., ksf	7.53	8.16	8.78	
	Ult.	Stress, ksf				
	Т	otal Pore Pr., ksf				
	$\overline{\sigma}_{\text{1}}$	Failure, ksf	2.81	3.65	6.74	
	$\overline{\sigma}_{3}$	Failure, ksf	0.67	1.04	2.42	

Client: Geocon, Inc.

Project: CEMEX - Cache Creek Plant

Location: B2-Bulk **Sample Number:** 28093

Proj. No.: 17-250 **Date Sampled:** Rec. 10/31/17

Tested By: MPW Checked By: CMW

Project: CEMEX - Cache Creek Plant

Location: B2-Bulk **Sample Number:** 28093

Project No.: 17-250 Figure B9

Gulf Shore Construction Services, LLC

Total Normal Stress, ksf ———— Effective Normal Stress, ksf ————

Type of Test:

CU with Pore Pressures **Sample Type:** Remold

Description:

Specific Gravity= 2.7

Remarks: Test specimen remolded to approximate 90% of an ASTM D1557 proctor at +2% over optimum moisture content.

Figure B10

Sample No.		1	2	3		
	Initial	Water Content, %	12.8	12.8	12.8	
		Dry Density, pcf	112.9	112.9	112.9	
		Saturation, %	70.1	70.1	70.1	
		Void Ratio	0.4930	0.4930	0.4930	
		Diameter, in.	2.81	2.81	2.81	
		Height, in.	5.66	5.66	5.66	
•	At Test	Water Content, %	18.3	17.7	17.7	
		Dry Density, pcf	112.9	114.1	114.1	
		Saturation, %	100.0	100.0	99.9	
'		Void Ratio	0.4930	0.4772	0.4772	
		Diameter, in.	2.81	2.81	2.82	
		Height, in.	5.64	5.60	5.58	
	Stra	ain rate, in./min.	0.012	0.013	0.120	
	Bac	ck Pressure, psi	50.00	50.00	50.00	
	Cel	l Pressure, psi	56.94	63.89	77.78	
	Fail	l. Stress, ksf	2.40	3.38	5.81	
	Т	otal Pore Pr., ksf	7.78	8.45	9.39	
	Ult.	Stress, ksf				
	Т	otal Pore Pr., ksf				
	$\overline{\sigma}_{\text{1}}$	Failure, ksf	2.82	4.13	7.62	
	$\overline{\sigma}_{3}$	Failure, ksf	0.42	0.75	1.81	

Client: Geocon, Inc.

Project: CEMEX - Cache Creek Plant

Location: A5-Bulk
Sample Number: 27920

Proj. No.: 17-250 **Date Sampled:** Rec. 10/25/17

Tested By: MPW Checked By: CMW

Project: CEMEX - Cache Creek Plant

Location: A5-Bulk **Sample Number:** 27920

Project No.: 17-250 Figure B11

Gulf Shore Construction Services, LLC

Total Normal Stress, ksf ————
Effective Normal Stress, ksf ————

Type of Test:

CU with Pore Pressures **Sample Type:** Liner

Description:

Specific Gravity= 2.7

Remarks:

Sar	mple No.	1	2	3	
	Water Content, %	22.0	22.0	21.8	
	Dry Density, pcf	95.7	95.7	96.2	
<u>a</u>	Saturation, %	77.9	78.1	78.3	
Initial	Void Ratio	0.7622	0.7620	0.7527	
	Diameter, in.	2.86	2.86	2.86	
	Height, in.	6.00	6.00	5.99	
	Water Content, %	27.2	27.6	27.5	
, te	Dry Density, pcf	97.1	96.6	96.7	
At Test	Saturation, %	99.9	99.9	100.0	
=	Void Ratio	0.7358	0.7444	0.7440	
1	Diameter, in.	2.85	2.86	2.86	
	Height, in.	5.96	5.95	5.95	
Stra	ain rate, in./min.	0.012	0.013	0.011	
Bad	ck Pressure, psi	50.00	50.00	50.00	
Cel	l Pressure, psi	56.94	63.89	77.78	
Fai	I. Stress, ksf	2.35	3.31	5.78	
Т	otal Pore Pr., ksf	7.73	8.37	9.24	
Ult.	Stress, ksf				
Т	otal Pore Pr., ksf				
$\overline{\sigma}_1$	Failure, ksf	2.82	4.14	7.74	
$\overline{\sigma}_3$	Failure, ksf	0.47	0.83	1.96	

Client: Geocon, Inc.

Project: CEMEX - Cache Creek Plant

Location: B3b

Sample Number: 28032 **Depth:** 4.0'-5.5'

Proj. No.: 17-250 **Date Sampled:** Rec. 10/31/17

Figure B12

Tested By: MPW Checked By: CMW

Project: CEMEX - Cache Creek Plant

Location: B3b **Depth:** 4.0'-5.5'

Project No.: 17-250

Sample Number: 28032 Figure <u>B13</u>

Gulf Shore Construction Services, LLC

Tested By: MPW Checked By: CMW

COMPACTION TEST REPORT

Curve No. 28093

	133														ZAV SpG 2.70								
	128																						
Dry density, pcf	123									9	.49	%,	12	2.2	2 p	cf	70						
Dry d	118								/											0			
	113				(
	108 3 5					7	W	/ate	er	co		ent	, %	1	1			1:	3	1	<u> </u>		

Preparation Method	Moist						
Rammer: Wt10 ll	o. Drop 18 in.						
Туре	Manual						
Layers: Nofive							
Mold Size0	.03333 cu. ft.						
Test Performed on Materia Passing 3/8 in.	ıl						
%>3/8 in.	% <no.200< td=""></no.200<>						
Atterberg (D 4318): LL	PI						
NM (D 2216)	Sp.G. (D 854) 2.70						
USCS (D 2487)							
AASHTO (M 145)							
Date: Sampled							
Received							
Tested By							

COMPACTION TESTING DATA ASTM D 1557-12 Method B Modified

	1	2	3	4	5	6
WM + WS	6180.3	6199.4	6202.5	6080.0	6001.0	
WM	4187.2	4187.2	4187.2	4187.2	4187.2	
WW + T #1	491.4	450.7	439.0	430.1	421.7	
WD + T #1	443.1	409.6	406.2	405.3	401.3	
TARE #1	64.5	45.6	47.1	51.1	52.0	
WW + T #2						
WD + T #2						
TARE #2						
MOIST.	12.8	11.3	9.1	7.0	5.8	
DRY DENS.	116.9	119.6	122.1	117.0	113.4	·

SIEVE TEST RESULTS

Opening Size	% Passing	Specs.

TEST RESULTS	Material Description
Maximum dry density = 122.2 pcf	
Optimum moisture = 9.4 %	Remarks:
Project No. 17-250 Client: Geocon, Inc.	
Project: CEMEX - Cache Creek Plant	
○ Location: B2-Bulk Sample Number: 28093	Checked by:
GULF SHORE	Title:
EXPLORATION AND TESTING	Figure B14

COMPACTION TEST REPORT

Preparation Method	Moist					
Rammer: Wt. 10 lb.	Drop18 in					
Туре	Manual					
Layers: Nofive	Blows per56					
Mold Size 0	0.075 cu. ft.					
Test Performed on Material						
Passing 3/4 in.	Sieve					
%>3/4 in. <u>29.0</u>	% <no.200< td=""></no.200<>					
Atterberg (D 4318): LL	PI					
NM (D 2216)	Sp.G. (D 854)					
USCS (D 2487)						
AASHTO (M 145)						
Date: Sampled	Rec. 10/25/17					
Received						
Tested						
Tested By	BM					

COMPACTION TESTING DATA ASTM D 1557-12 Method C Modified ASTM D4718-15 Oversize Corr. Applied to Each Test Point

	1	2	3	4	5	6
WM + WS	7137.0	7350.1	7496.4	7507.5		
WM	2741.3	2741.3	2741.2	2741.2		
WW + T #1	308.0	431.9	481.5	477.1		
WD + T #1	290.4	399.8	436.0	427.0		
TARE #1	44.4	44.2	46.3	51.0		
WW + T #2						
WD + T #2						
TARE #2						
MOIST.	5.3	6.7	8.6	9.7		
DRY DENS.	131.4	134.5	135.3	134.0		·

SIEVE TEST RESULTS ag Size % Passing

ı	Opening Size	% Passing	Specs.
١			
١			
١			
١			
١			
١			
١			
١			
١			
١			
١			
١			
l			

ROCK CORRECTED TEST RESULTS	UNCORRECTED	Material Description
Maximum dry density = 135.5 pcf	125.4 pcf	
Optimum moisture = 7.9 %	10.8 %	Remarks:
Project No. 17-250 Client: Geocon, Inc.		

Project: CEMEX - Cache Creek Plant

O Location: A5-Bulk Sample Number: 27920

0 01111	
22	GULF SHORE
	EXPLORATION AND TESTING

Checked by: CMW

Title: PM

Figure B15

CD/WET/STAGED

BORING NO:

B-2

DEPTH:

45.0 ft.

SOIL DESCRIPTION:

Clean Gray Sand

FRICTION ANGLE = 37 deg.

COHESION = 380.0 psf

DRY DENSITY - pcf	106.4		
WATER CONTENT - %	18.3		
NORMAL STRESS - psf	630	1170	2290
MAXIMUM SHEAR - psf	820	1270	2050

DIRECT SHEAR TEST Solano Concrete Madison Plant

PLATE

17

PROJECT NO. 40-2695-01

Yolo County, California

CD/WET/STAGED

BORING NO:

B-2

DEPTH:

60.0 ft.

SOIL DESCRIPTION:

Brown Silty Sand

FRICTION ANGLE = 34 deg.

COHESION = 400.0 psf

DRY DENSITY - pcf	98.7		
WATER CONTENT - %	22.3		
NORMAL STRESS - psf	630	1160	2250
MAXIMUM SHEAR - psf	810	1210	1920

DIRECT SHEAR TEST
Solano Concrete Madison Plant

PLATE

Yolo County, California

PROJECT NO.

40-2695-01

CD/WET/STAGED

BORING NO:

B-9

DEPTH:

30.0 ft.

SOIL DESCRIPTION:

Dark Brown Silty Sand

FRICTION ANGLE = 41 deg.

COHESION = 50.0 psf

DRY DENSITY - pcf	90.3	89.7	96.1
WATER CONTENT - %	19.4	19.2	19.7
NORMAL STRESS - psf	630	1250	2220
MAXIMUM SHEAR - psf	550	1150	1910

DIRECT SHEAR TEST
Solano Concrete Madison Plant

PLATE

19

PROJECT NO. 40-2695-01

Yolo County, California

CD/WET/STAGED

BORING NO:

B-10

DEPTH:

60.0 ft.

SOIL DESCRIPTION:

Dark Brown Sand (slightly disturbed)

FRICTION ANGLE = 23 deg.

COHESION = 285.0 psf

DRY DENSITY - pcf	91.4	93.7	96.2
WATER CONTENT - %	22.9	22.0	23.3
NORMAL STRESS - psf	650	1170	2240
MAXIMUM SHEAR - psf	560	780	2000

DIRECT SHEAR TEST
Solano Concrete Madison Plant

PLATE

20

Yolo County, California

PROJECT NO.

40-2695-01

CD/WET/STAGED

BORING NO:

B-11

DEPTH:

65.0 ft.

SOIL DESCRIPTION:

Brown-Gray Silty Sand (Slightly Disturbed)

FRICTION ANGLE = 32 deg.

COHESION = 150.0 psf

DRY DENSITY - pcf	94	95.3	98.2
WATER CONTENT - %	17.3	17.1	17.3
NORMAL STRESS - psf	650	1150	2240
MAXIMUM SHEAR - psf	480	940	1500

DIRECT SHEAR TEST Solano Concrete Madison Plant PLATE

PROJECT NO. 40-2695-01

Yolo County, California

CD/WET/STAGED

BORING NO:

B-12

DEPTH:

40.0 ft.

SOIL DESCRIPTION:

Brown Silty Sand (some pebbles)

FRICTION ANGLE = 46 deg.

COHESION = 50.0 psf

DRY DENSITY - pcf	117.7	118.6	94.7
WATER CONTENT - %	13.5	13.8	27.2
NORMAL STRESS - psf	640	1170	2290
MAXIMUM SHEAR - psf	690	1220	4630

DIRECT SHEAR TEST Solano Concrete Madison Plant

PLATE

22

PROJECT NO. 40-2695-01

Yolo County, California

CD/WET/STAGED

BORING NO:

B-13

DEPTH:

40.0 ft.

SOIL DESCRIPTION:

Brown Sand (totally remolded)

FRICTION ANGLE = 21 deg.

COHESION = 340.0 psf

DRY DENSITY - pcf	94.3	100.9	97.8
WATER CONTENT - %	18.1	16.0	15.8
NORMAL STRESS - psf	630	1150	2240
MAXIMUM SHEAR - psf	590	780	1200

DIRECT SHEAR TEST Solano Concrete Madison Plant

PLATE

23

Yolo County, California

PROJECT NO. 40-2695-01

BORING NO:	B-1	DRY DENSITY:	74.50 pcf
DEPTH:	70.0 ft	WATER CONTENT:	46.38 %
SOIL DESCRI	PTION: Yellow Brown Silty Clay		

MAX. UC STRENGTH = 2232 psf AT 7.50% STRAIN

UNCONFINED COMPRESSION Solano Concrete Madison Plant

PLATE

24

Yolo County, California

BORING NO:	B-1	DRY DENSITY:	78.90 pcf
DEPTH:	85.0 ft	WATER CONTENT:	38.22 %
SOIL DESCRI	PTION: Olive Brown Silty Clay		

MAX. UC STRENGTH = 957 psf AT 7.50% STRAIN

BORING NO:	B-2	DRY DENSITY:	75.90 pcf
DEPTH:	75.0 ft	WATER CONTENT:	
SOIL DESCRI	PTION: Gray Brown Silty Clay		

MAX. UC STRENGTH = 1463 psf AT 10.00% STRAIN

40-2695-01

PROJECT NO.

UNCONFINED COMPRESSIONSolano Concrete Madison Plant

PLATE

Yolo County, California

 BORING NO:
 B-7
 DRY DENSITY:
 78.40 pcf

 DEPTH:
 75.0 ft
 WATER CONTENT:
 39.10 %

 SOIL DESCRIPTION:
 Light Brown Silty Clay

MAX. UC STRENGTH = 1120 psf AT 12.50% STRAIN

UNCONFINED COMPRESSIONSolano Concrete Madison Plant

PLATE

Yolo County, California

PROJECT NO. 40-2695-01

 BORING NO:
 B-9
 DRY DENSITY:
 89.30 pcf

 DEPTH:
 35.0 ft
 WATER CONTENT:
 31.29 %

 SOIL DESCRIPTION:
 Blue-Gray Silty Clay

MAX. UC STRENGTH = 1356 psf AT 5.00% STRAIN

40-2695-01

PROJECT NO.

UNCONFINED COMPRESSIONSolano Concrete Madison Plant

PLATE

Yolo County, California

BORING NO:	B-10	DRY DENSITY:	89.50 pcf
DEPTH:	45.0 ft	WATER CONTENT:	31.90 %
SOIL DESCRII	PTION:		

MAX. UC STRENGTH = 1004 psf AT 15.00% STRAIN

BORING NO: B-12	DRY DENSITY:	78.40 pcf
DEPTH: 50.0 ft	WATER CONTENT:	
SOIL DESCRIPTION: Gray Clay		

MAX. UC STRENGTH = 1330 psf AT 10.00% STRAIN

UNCONFINED COMPRESSION Solano Concrete Madison Plant

PLATE

Yolo County, California

PROJECT NO. 40-2695-01

APPENDIX C

APPENDIX C SLOPE STABILITY AND SEEPAGE ANALYSIS

The computer programs SLOPE/W and SEEP/W Version 7 distributed by Geo-Slope International were utilized to perform slope stability and seepage analyses. SEEP/W is a finite element analysis software product for analyzing groundwater seepage and excess-pore pressure dissipation problems within porous materials such as soil and rock. SLOPE/W uses conventional slope stability equations and a two-dimensional limit-equilibrium method to calculate the factor of safety against failure. For our analysis, the Morgenstern-Price Method with a circular failure mechanism was used. The Morgenstern-Price Method satisfies both moment and force equilibrium.

The computer program searches for the critical failure surface based on user-provided input parameters. For a circular failure search, a linear search of entry and exit locations is specified and the computer searches for the critical failure slip surface. Tabulated results of the factor of safety (FS) against failure for each slope configuration under the conditions of analysis (e.g. high groundwater, low groundwater, static, seismic, surficial and global) are summarized in Table 6.6. Graphical representations of the seepage analyses, potential critical failure surfaces, and parameters used for each analysis are presented on Figures C1 through C17.

APPENDIX D LIQUEFACTION ANALYSIS

Liquefaction Hazard Analysis Youd, T. L. et al - 2001 Project: Cemex Cache Creek Proj No: \$1294-05-01 Location: B1

Earthquake Varia	ables		Site variables			Slope and Free Face Variables					
2% Proba	bility of exceed	dence in	Water table depth:	30	ft	Slope, S	0.0	%			
50 Years.			Global variables			Face Height, H	0	(ft)			
Return Period:	2474.92	Years	$\gamma_{\mathbf{w}}$	62.4	pcf	Dist. to Face, L	0	(ft)			
a _{max} :	0.490	g	Pa (atmospheric pressure)	1.058	tsf	S		_			
Magnitude:	6.5	$M_{\rm w}$	FS _{min, allowable} :	1.3		2					
MSF	1.44192		ε _v method:	Tokimats	su	† ∟					

Layer	Top (ft)	Bottom (ft)	Soil Type	γ (pcf)	σ _{vo} (tsf)	σ' _{vo} (tsf)	r _d	CSR	N _{sot}	(N ₁) ₆₀	%Fines (%)	(N ₁) _{60cs}	Calc?	CRR _{7.5}	CRR	FS ε _ν (%)	∆H (in)	∆H _{Drv} (in)	ΣΔH (in)	LD (ft)	S _r (tsf)
1	0.00	0.94	CL	120	0.03	0.03	1.00	0.32	17.7	22.57	90.00	32.1	n			(70)	(111)	0.00	0.00	0.00	((81)
2	0.94 1.89	1.89 2.83	CL CL	120 120	0.09	0.09	1.00	0.32	17.7 17.7	22.57 22.57	90.00	32.1 32.1	n					0.00	0.00	0.00	
4	2.83	3.78	CL	120	0.14	0.14	0.99	0.32	14.0	17.91	90.00	26.5	n n					0.00	0.00	0.00	
5	3.78	4.72	CL	120	0.26	0.26	0.99	0.32	11.5	14.65	90.00	22.6	n					0.01	0.01	0.00	
6 7	4.72 5.67	5.67 6.61	CL CL	120 120	0.31 0.37	0.31	0.99	0.32	9.5 10.1	12.07 12.81	90.00 90.00	19.5 20.4	n n					0.01 0.01	0.01 0.01	0.00	
8	6.61	7.56	CL	120	0.43	0.43	0.99	0.31	10.8	12.80	90.00	20.4	n					0.01	0.01	0.00	
9 10	7.56 8.50	8.50 9.00	CL CL	120 120	0.48 0.53	0.48	0.98	0.31	10.8 10.8	12.02 11.52	90.00 90.00	19.4 18.8	n n					0.01 0.01	0.01 0.01	0.00	
11	9.00	9.44	CL-ML	120	0.55	0.55	0.98	0.31	12.2	12.62	90.00	20.1	n					0.00	0.00	0.00	
12 13	9.44 10.39	10.39 11.33	CL-ML CL-ML	120 120	0.60 0.65	0.60 0.65	0.98	0.31	12.2 12.2	12.17 15.50	90.00 90.00	19.6 23.6	n					0.01 0.01	0.01 0.01	0.00	
14	11.33	12.28	CL-ML	120	0.03	0.03	0.98	0.31	12.2	14.87	90.00	22.8	n n					0.01	0.01	0.00	
15	12.28	13.00	CL-ML	120	0.76	0.76	0.97	0.31	12.2	14.37	90.00	22.2	n					0.01	0.01	0.00	
16 17	13.00 13.22	13.22 14.17	SP SP	115 115	0.79 0.82	0.79	0.97 0.97	0.31	35.2 35.2	40.77 39.93	5.10 5.10	40.8 40.0	y y					0.00	0.00	0.00	
18	14.17	15.11	SP	115	0.87	0.87	0.97	0.31	35.2	38.67	5.10	38.7	У					0.00	0.00	0.00	
19 20	15.11 16.06	16.06 17.00	SP SP	115 115	0.93	0.93	0.97 0.96	0.31	35.2 35.2	37.52 36.47	5.10 5.10	37.6 36.5	y y					0.00	0.00	0.00	
21	17.00	17.94	SP	115	1.04	1.04	0.96	0.31	35.2	35.50	5.10	35.6	у					0.00	0.00	0.00	
22	17.94 18.89	18.89 19.50	SP SP	115 115	1.09 1.14	1.09 1.14	0.96	0.31	35.2 35.2	34.61 33.92	5.10 5.10	34.7 34.0	y y					0.00	0.00	0.00	
24	19.50	19.83	SW-SM	115	1.16	1.16	0.96	0.30	46.0	43.84	5.10	43.9	ý					0.00	0.00	0.00	
25 26	19.83 20.78	20.78 21.72	SW-SM SW-SM	115 115	1.20 1.25	1.20 1.25	0.96 0.95	0.30	46.0 45.0	43.16 41.36	5.10 5.10	43.2 41.4	y y					0.00	0.00	0.00	
27	21.72	22.67	SW-SM	115	1.31	1.31	0.95	0.30	44.3	39.86	5.10	39.9	٧					0.00	0.00	0.00	
28 29	22.67	23.61 24.56	SW-SM SW-SM	115 115	1.36	1.36 1.42	0.95 0.94	0.30	43.6 42.9	38.44	5.10	38.5	у					0.00	0.00	0.00	
30	23.61 24.56	24.56 25.50	SW-SM SW-SM	115 115	1.42 1.47	1.42	0.94	0.30	42.9 42.3	37.09 35.82	5.10 5.10	37.2 35.9	y y					0.00	0.00	0.00	
31	25.50	26.44	SW-SM	115	1.53	1.53	0.94	0.30	42.3	35.18	5.10	35.2	У					0.00	0.00	0.00	
32 33	26.44 27.39	27.39 28.33	SW-SM SW-SM	115 115	1.58 1.63	1.58 1.63	0.93	0.30	42.3 42.3	34.57 33.99	5.10 5.10	34.6 34.0	y y					0.00 0.01	0.00 0.01	0.00	
34	28.33	29.28	SW-SM	115	1.69	1.69	0.93	0.29	42.3	33.44	5.10	33.5	y					0.01	0.01	0.00	
35 36	29.28 30.00	30.00 30.22	SW-SM SW-SM	115 115	1.74 1.76	1.74 1.76	0.92	0.29	42.3 42.3	32.98 32.75	5.10 5.10	33.0 32.8	y y					0.00	0.00	0.00	
37	30.22	31.17	SW-SM	115	1.80	1.78	0.92	0.30	42.3	32.75	5.10	32.7	y						0.00	0.00	
38 39	31.17 32.11	32.11 33.06	SW-SM SW-SM	115 115	1.85 1.91	1.80 1.83	0.91	0.30 0.30	42.3 42.3	32.39 32.17	5.10 5.10	32.4 32.2	y V						0.00	0.00	
40	33.06	34.00	SW-SM	115	1.96	1.85	0.90	0.30	42.3	31.95	5.10	32.2	y						0.00	0.00	
41	34.00	34.00	ML	120	1.99	1.86	0.90	0.30	16.9	12.74	100.00	20.3	n						0.00	0.00	
42 43	34.00 34.94	34.94 35.89	ML ML	120 120	2.02	1.88 1.90	0.89	0.31	16.9 16.9	12.69 12.60	100.00 100.00	20.2 20.1	n n						0.00	0.00	
44	35.89	36.83	ML	120	2.13	1.93	0.88	0.31	16.9	12.51	100.00	20.0	n						0.00	0.00	
45 46	36.83 37.78	37.78 38.72	ML ML	120 120	2.19 2.24	1.96 1.99	0.87	0.31	16.9 16.9	12.42 12.34	100.00 100.00	19.9 19.8	n n						0.00	0.00	
47	38.72	39.00	ML	120	2.28	2.00	0.86	0.31	16.9	12.28	100.00	19.7	n						0.00	0.00	
48 49	39.00 39.67	39.67 40.61	GP GP	125 125	2.31	2.02	0.86	0.31	101.4 101.4	73.44 72.98	6.20 6.20	73.9 73.4	y						0.00	0.00	
50	40.61	41.56	GP	125	2.42	2.04	0.84	0.31	101.4	72.46	6.20	72.9	y						0.00	0.00	
51	41.56	42.50	GP	125	2.48	2.10	0.83	0.31	101.4	71.95	6.20	72.4	У						0.00	0.00	
52 53	42.50 43.44	43.44 44.39	GP GP	125 125	2.54 2.59	2.13 2.16	0.82	0.31	101.4 101.4	71.45 70.96	6.20 6.20	71.9 71.4	y y						0.00	0.00	
54	44.39	45.33	GP	125	2.65	2.19	0.80	0.31	101.4	70.48	6.20	70.9	у						0.00	0.00	
55 56	45.33 46.28	46.28 47.22	GP GP	125 125	2.71 2.77	2.22	0.79 0.78	0.31	101.4 101.4	70.01 69.54	6.20 6.20	70.4 70.0	y y						0.00	0.00	
57	47.22	48.17	GP	125	2.83	2.28	0.78	0.31	101.4	69.09	6.20	69.5	٧						0.00	0.00	
58 59	48.17 49.11	49.11 50.06	GP GP	125 125	2.89 2.95	2.31 2.34	0.77 0.76	0.31	63.4 57.5	42.95 38.65	6.20 6.20	43.2 38.9	y y						0.00	0.00	
60	50.06	51.00	GP	125	3.01	2.37	0.75	0.30	57.5	38.41	6.20	38.7	у						0.00	0.00	
61 62	51.00 51.94	51.94 52.89	GP GP	125 125	3.07 3.13	2.40 2.43	0.74	0.30	57.5 57.5	38.17 37.94	6.20 6.20	38.4 38.2	y						0.00	0.00	
63	52.89	53.50	GP	125	3.17	2.45	0.72	0.30	57.5	37.75	6.20	38.0	y						0.00	0.00	
64 65	53.50	53.83	SC-SM	120	3.20	2.47	0.71	0.30	82.8	54.25	22.00	63.2	У						0.00	0.00	
65 66	53.83 54.78	54.78 55.72	SC-SM SC-SM	120 120	3.24 3.30	2.48 2.51	0.71 0.70	0.29	82.8 82.8	54.05 53.75	22.00 22.00	63.0 62.7	y y						0.00	0.00	
67 68	55.72	56.67	SC-SM SC-SM	120	3.36	2.54	0.69	0.29	79.2	51.12	22.00	59.8	٧						0.00	0.00	
68 69	56.67 57.61	57.61 58.56	SC-SM SC-SM	120 120	3.41 3.47	2.57 2.59	0.68 0.67	0.29	76.3 73.4	49.00 46.91	22.00 22.00	57.5 55.2	y y						0.00	0.00	
70	58.56	59.50	SC-SM	120	3.53	2.62	0.67	0.29	70.6	44.84	22.00	52.9	у						0.00	0.00	
71 72	59.50 60.00	60.00 60.44	SC-SM GP	120 125	3.57 3.60	2.64 2.65	0.66	0.28	67.6 67.6	42.79 42.68	22.00 6.20	50.7 42.9	y						0.00	0.00	
73	60.44	61.39	GP	125	3.64	2.68	0.65	0.28	67.6	42.50	6.20	42.8	у						0.00	0.00	
74 75	61.39 62.33	62.33 63.28	GP GP	125 125	3.70 3.76	2.71 2.74	0.64 0.64	0.28	67.6 67.6	42.27 42.04	6.20 6.20	42.5 42.3	y y						0.00	0.00	
76	63.28	64.22	GP	125	3.82	2.77	0.63	0.28	67.6	41.82	6.20	42.1	у						0.00	0.00	
77 78	64.22 65.17	65.17 66.11	GP GP	125 125	3.88 3.94	2.79 2.82	0.62	0.28	67.6 67.6	41.59 41.38	6.20 6.20	41.9 41.6	٧						0.00	0.00	
79	66.11	67.06	GP	125	4.00	2.85	0.62	0.27	67.6	41.16	6.20	41.4	y						0.00	0.00	
80 81	67.06 68.00	68.00 68.94	GP GP	125 125	4.05 4.11	2.88 2.91	0.61	0.27	67.6 67.6	40.95 40.74	6.20 6.20	41.2 41.0	У						0.00	0.00	
81 82	68.00 68.94	69.00	GP GP	125 125	4.11 4.14	2.91	0.60	0.27	67.6 67.6	40.74	6.20	41.0 40.9	y						0.00	0.00	
83	69.00	69.89	SP	115	4.17	2.94	0.59	0.27	54.1	32.44	5.10	32.5	у						0.00	0.00	
84 85	69.89 70.83	70.83 71.78	SP SP	115 115	4.22 4.28	2.97 2.99	0.59 0.58	0.27	54.1 55.0	32.30 32.69	5.10 5.10	32.4 32.7	y y						0.00	0.00	
86	71.78	72.72	SP	115	4.33	3.01	0.58	0.27	55.6	32.94	5.10	33.0	У						0.00	0.00	
87 88	72.72 73.67	73.67 74.61	SP SP	115 115	4.39 4.44	3.04	0.57 0.57	0.26	56.2 56.9	33.18 33.42	5.10 5.10	33.2 33.5	y y						0.00	0.00	
89	74.61	75.56	SP	115	4.50	3.09	0.57	0.26	57.5	33.66	5.10	33.7	y						0.00	0.00	
90 91	75.56 76.50	76.50 77.44	SP SP	115 115	4.55 4.60	3.11	0.56 0.56	0.26	58.2 58.8	33.90 34.13	5.10 5.10	34.0 34.2	У						0.00	0.00	
91	75.50	78.39	SP	115	4.66	3.14 3.16	0.56	0.26	59.4	34.13	5.10	34.2	y						0.00	0.00	
93	78.39	79.33	SP	115	4.71	3.19	0.55	0.26	60.1	34.60	5.10	34.7	у						0.00	0.00	
94 95	79.33 80.28	80.28 81.22	SP SP	115 115	4.77 4.82	3.21 3.24	0.55 0.54	0.26	60.8 60.8	34.91 34.77	5.10 5.10	35.0 34.8	y y						0.00	0.00	
96	81.22	82.17	SP	115	4.88	3.26	0.54	0.26	60.8	34.64	5.10	34.7	У						0.00	0.00	
97 98	82.17 83.00	83.00 83.11	SP CL	115 120	4.93 4.95	3.29 3.30	0.54	0.26	60.8 82.2	34.52 46.55	5.10 90.00	34.6 60.9	y n						0.00	0.00	
99	83.11	84.06	CL	120	4.99	3.31	0.54	0.26	82.5	46.61	90.00	60.9	n						0.00	0.00	
100	84.06	85.00	CL	120	5.04	3.34	0.53	0.26	82.2	46.25	90.00	60.5	n						0.00	0.00	

S1294-05-01 Liquefaction - Cemex Cache Creek_B1 12/11/2017, 12:58 PM

Liquefaction Hazard Analysis Youd, T. L. et al - 2001 Project: Cemex Cache Creek Proj No: \$1294-05-01 Location: B2

Earthquake Varia	ables		Site variables			Slope and Free Face Variables					
2% Proba	bility of exceed	dence in	Water table depth:	25	ft	Slope, S	0.0	%			
50 Years.			Global variables			Face Height, H	0	(ft)			
Return Period:	2474.92	Years	$\gamma_{\mathbf{w}}$	62.4	pcf	Dist. to Face, L	0	(ft)			
a _{max} :	0.490	g	Pa (atmospheric pressure)	1.058	tsf	S		_			
Magnitude:	6.5	M_w	FS _{min, allowable} :	1.3		<u> </u>					
MSF	1.44192		ε _v method:	Tokimats	su	‡					

1	Layer			Soil Type				r _d	CSR	N _{sot}	(N ₁) ₆₀		(N ₁) _{60cs}	Calc?	CRR _{7.5}	CRR	v					
2	1			CL				1.00	0.32	17.7	22.57		32.1	n			(%)	(in)				(tSf)
4 2 4 2 3 9 CL		0.82	1.65					1.00	0.32	17.7	22.57	90.00										
2 3.29 4.11 5.78 6.21 1.15 5.21 5.2																						
C																						
8 5.75 6.58 C.L. 115 6.59 6.26 116 6.20 6.20 116 6.20		4.11	4.94	CL	115	0.26	0.26	0.99	0.32	12.7	16.17	90.00	24.4	n					0.00	0.00	0.00	
3																						
11 5.27 5.06 CL 156 6.05																						
12 930 987																						
13 1.5																						
15																						
16 134 134 134 135 136 137																						
17																						
18																						
25 15.63 14.55 14.15 15.00																						
22 17.00 17.00 10. 11.0 0.08 0																						
1.22	21	16.45	17.00	CL	115	0.96	0.96	0.96	0.31	10.8	11.34	90.00	18.6						0.01	0.01	0.00	
24 15 16 18 18 18 18 18 18 18																						
18.00 19.74 0.00																						
27 20.56 21.00 60W 125 121 121 035 036 34.09 1.50 34.1 V	25	18.92	19.74		125	1.12	1.12		0.31		35.43	1.50	35.4						0.00		0.00	
22 2.00 2.130 SP 155 124 124 0.56 0.39 413 38.72 10.00 40.4 y																						
22 23 22 23 25 25 25 25																						
31 23.03 23.55 SP 125 1.38 1.38 1.38 0.95 0.30 419 35.69 10.00 38.4 y 0.00 0.00 0.00 0.00 1.33 1.35 1.35 1.47 1.49 0.94 0.39 1.35 1.35 1.47 1.49 0.94 0.39 1.35 1.35 1.47 1.49 0.94 0.39 1.35 1.35 1.49 1.49 0.94 0.39 1.35 1.35 1.49 1.49 0.94 0.39 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35		21.39	22.21		125	1.28	1.28	0.95	0.30		38.14	10.00	39.8	У					0.00	0.00	0.00	
22 23.85 24.86 SP 175 1.48 1.49 0.44 0.38 1.9 36.30 1.00 37.7																						
33 2469 2500 SP 125 1-73 1-85 1-85 1-85 1-85 1-85 1-85 1-85 1-85																						
35 2550 2632 SP 125 155 155 156 049 039 419 3512 1000 364 Y	33			SP		1.47	1.47						37.2	у					0.00			
36 26 22 21.5 SP 125 169 125 169 136 038 031 419 3438 1000 36.4 y																						
37 2715 2787 SP 125 164 158 033 034 419 3438 1000 351 V	36										34.82											
2879 2879 2876 SP 125 174 181 022 032 419 3338 10.00 35.6 y														٧								
40 2981 30.00 SP 125 1.78 1.83 0.82 0.32 41.9 33.78 10.00 38.4 y 41 30.00 30.44 CL 120 1.84 1.86 0.92 0.32 1.1 8.1 9.00 1.86 1.89 1.0 42 30.44 31.28 CL 120 1.84 1.86 0.92 0.32 1.1 8.1 9.10 90.00 1.88 1.89 1.0 43 0.44 31.28 CL 120 1.94 1.71 0.91 0.33 1.81 1.90 90.00 1.88 1.89 1.0 44 32.00 33.73 CL 120 1.99 1.73 0.90 0.33 1.81 1.90 90.00 1.88 1.89 1.0 45 32.00 33.73 CL 120 1.99 1.73 0.90 0.33 1.81 1.90 90.00 1.81 1.0 46 33.57 38.59 CL 1.00 2.94 1.70 0.90 0.33 1.81 1.90 90.00 1.81 1.0 47 33.73 38.59 CL 1.00 2.94 1.99 1.73 0.90 0.33 1.81 1.90 90.00 1.81 1.0 48 35.37 38.59 CL 1.00 2.94 1.80 0.88 0.33 1.76 1.38 90.00 1.81 1.0 49 35.00 3.61 9 ML 120 2.14 1.90 0.88 0.33 1.76 1.34 90.00 2.12 1.0 40 35.00 3.81 9 ML 120 2.14 1.90 0.88 0.33 1.76 1.34 90.00 2.12 1.0 40 35.00 3.80 9 ML 120 2.14 1.80 0.88 0.33 1.78 1.34 90.00 2.12 1.0 40 0.00 0.00 0.00 0.00 0.00 0.00 0														-								
42 30.44 31.26 CL 120 1.84 1.86 0.22 0.32 11.4 1.90 90.00 15.9 n n 0.000 0.00 44 31.30 2.08 CL 120 1.99 1.73 0.00 0.31 1.61 1.73 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0	40	29.61		SP	125	1.78	1.63	0.92	0.32					-								
43 31.28 32.08 CL 120 189 168 091 033 126 1001 90.00 17.0 n 0.00 0.00 1.00 1.00 1.00 1.00 1.00																						
44 32.08 32.30 CL 120 19.4 17.1 0.91 0.31 13.8 10.90 90.00 18.1 n 0.00 0.00 14.5 32.7 33.7 34.55 CL 120 19.9 17.7 0.90 0.31 15.1 17.7 90.00 20.2 n 0.00 0.00 14.5 32.7 34.55 CL 120 12.9 17.8 0.90 0.31 15.1 17.8 90.00 20.2 n 0.00 0.00 14.5 32.7 34.55 CL 120 12.9 17.8 0.90 0.33 16.3 17.8 13.5 18.6 90.00 20.2 n 0.00 0.00 0.00 14.5 32.7 35.50 CL 120 12.9 17.8 0.90 0.33 16.3 17.8 13.5 19.00 21.2 n 0.00 0.00 0.00 14.5 35.5 35.50 CL 120 12.9 17.8 0.90 0.33 17.8 13.5 19.00 21.2 n 0.00 0.00 0.00 0.00 14.5 35.5 35.50 CL 120 12.9 17.8 0.90 0.3 17.8 13.5 19.00 21.2 n 0.00 0.00 0.00 0.00 0.00 14.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19																						
46 33.73 34.55 CL 120 2.04 1.75 0.90 0.31 16.3 12.66 90.00 20.2 n																						
47 34.55 35.37 CL 120 2.09 1.78 0.89 0.33 176 13.56 90.00 21.3 n																						
48 35.37 35.50 CL 49 35.50 Sci 9 ML 40 35.50 Sci 9 ML 41 120 2.14 1.80 0.88 0.33 17.6 13.51 90.00 21.2 n 0.00 0.00 0.00 0.00 0.00 0.00 0.00																						
50 36.19 37.02 ML 120 2.19 1.82 0.88 0.34 17.6 13.40 90.00 21.1 n	48	35.37	35.50	CL	120	2.12	1.79	0.89	0.33	17.6	13.51	90.00	21.2							0.00	0.00	
51 37.02 37.84 ML 120 224 185 087 034 17.6 13.32 90.00 20.9 n																						
53 38.66 39.48 ML 120 2.33 1.90 0.86 0.34 17.6 13.15 90.00 20.7 n 0.00 0.00 0.00 0.00 0.55 40.31 41.13 ML 120 2.43 1.34 0.84 0.34 17.6 12.99 90.00 20.6 n 0.00																						
54 39.48 40.31 ML 120 2.38 1.92 0.85 0.34 17.6 13.07 90.00 20.7 n 0.00																						
55 40.31 41.13 ML 120 2.43 1.94 0.84 0.34 17.6 12.91 90.00 20.5 n 0.00																						
57				ML			1.94	0.84														
58 42.00 42.77 GP-GC 125 2.58 1.99 0.83 0.34 62.5 45.75 6.20 45.6 y 0.00 0.00																						
59 42.77 43.60 GP-GC 125 2.58 2.02 0.82 0.33 62.5 45.29 6.20 45.6 y 0.00 0.00																						
61 44.42 45.24 GP-GC 125 2.69 2.07 0.80 0.33 62.5 44.72 6.20 45.8 v				GP-GC									45.6									
62 45.24 46.06 GP-GC 125 2.74 2.09 0.80 0.33 64.0 45.47 6.20 45.8 V 63 46.06 46.89 GP-GC 125 2.79 2.12 0.79 0.33 65.8 46.47 6.20 45.8 V 64 46.89 47.71 GP-GC 125 2.84 2.15 0.78 0.33 67.6 47.46 6.20 47.8 V 65 47.71 48.53 GP-GC 125 2.89 2.17 0.77 0.33 69.4 48.44 6.20 49.7 V 66 47.1 48.53 69.35 GP-GC 125 2.94 2.20 0.76 0.32 71.2 49.41 6.20 49.7 V 67 49.35 50.18 GP-GC 125 3.00 2.22 0.75 0.32 71.30 50.37 6.20 50.7 V 68 50.18 51.00 GP-GC 125 3.05 2.25 0.75 0.32 71.8 51.32 6.20 51.6 V 69 51.00 51.82 GP-GC 125 3.05 2.25 0.75 0.32 71.8 51.32 6.20 51.6 V 69 51.00 51.82 GP-GC 125 3.05 2.25 0.75 0.32 71.8 51.32 6.20 51.6 V 69 51.00 51.82 GP-GC 125 3.05 2.25 0.75 0.32 71.8 51.32 6.20 51.6 V 69 51.00 51.82 GP-GC 125 3.15 2.20 0.73 0.32 78.4 53.19 6.20 53.5 V 60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0																						
63 46.06 46.89 6P-GC 125 2.79 2.12 0.79 0.33 65.8 46.47 6.20 46.8 y 0.00 0.00 64 46.89 47.71 48.53 6P-GC 125 2.84 2.15 0.78 0.33 67.6 47.46 6.20 47.8 y 0.00 0.00 66 48.53 48.35 6P-GC 125 2.89 2.20 0.76 0.33 69.4 48.44 6.20 48.7 y 0.00 0.00 67 49.35 50.18 6P-GC 125 3.00 2.22 0.75 0.32 73.0 50.37 6.20 50.7 y 0.00 0.00 68 50.18 51.00 6P-GC 125 3.00 2.25 0.75 0.32 73.0 50.37 6.20 50.7 y 0.00 0.00 69 51.00 51.82 6P-GC 125 3.10 2.27 0.74 0.32 76.6 52.26 6.20 52.6 y 0.00 0.00 70 51.82 52.65 53.47 6P-GC 125 3.15 2.30 0.73 0.32 78.4 53.19 6.20 53.5 y 0.00 0.00 71 52.65 53.47 54.29 6P-GC 125 3.25 2.35 0.73 0.32 80.2 54.11 6.20 54.4 y 0.00 0.00 73 54.29 55.11 6P-GC 125 3.30 2.38 0.70 0.31 84.5 56.37 6.20 56.7 y 0.00 0.00 74 55.54 55.94 6P-GC 125 3.36 2.40 0.70 0.31 84.5 56.37 6.20 56.7 y 0.00 0.00 75 55.94 56.76 6P-GC 125 3.46 2.45 0.88 0.31 85.9 56.67 6.20 57.0 y 0.00 0.00 76 56.76 57.58 6P-GC 125 3.46 2.45 0.88 0.31 85.9 56.67 6.20 57.3 y 0.00 0.00 77 57.55 58.40 6P-GC 125 3.46 2.45 0.88 0.31 85.9 56.67 6.20 57.3 y 0.00 0.00 78 56.40 59.23 6P-GC 125 3.46 2.45 0.88 0.31 85.9 56.67 6.20 57.3 y 0.00 0.00 79 59.23 60.05 6P-GC 125 3.46 2.45 0.88 0.31 85.9 56.67 6.20 57.5 y 0.00 0.00 79 59.23 60.05 6P-GC 125 3.46 2.45 0.88 0.31 85.9 56.67 6.20 57.3 y 0.00 0.00 80 60.05 6P-GC 125 3.46 2.45 0.88 0.31 85.9 56.67 6.20 57.3 y 0.00 0.00 81 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05 60.05																						
66 447.71 48.53 6P-GC 125 2.89 2.17 0.77 0.33 69.4 48.44 6.20 48.7 y 0.00 0.00 0.00 67 49.35 50.18 6P-GC 125 2.94 2.20 0.76 0.32 73.0 50.37 6.20 50.7 y 0.00 0.00 0.00 69 51.00 51.82 6P-GC 125 3.05 2.25 0.75 0.32 74.8 51.32 6.20 51.6 y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 69 51.00 51.82 6P-GC 125 3.15 2.30 0.73 0.73 78.8 51.31 6.20 51.6 y 0.00				GP-GC	125						46.47	6.20	46.8	У						0.00	0.00	
66 44.53 49.35 GP-GC 125 2.94 2.20 0.76 0.33 71.2 49.41 6.20 49.7 y 67 49.35 50.18 GP-GC 125 3.00 2.22 0.75 0.32 73.0 50.37 6.20 50.7 v 68 50.18 51.00 GP-GC 125 3.00 2.25 0.75 0.32 73.0 50.37 6.20 50.7 v 70 51.82 62.65 GP-GC 125 3.10 2.30 0.32 73.0 50.32 73.0 50.37 6.20 51.6 y 71 52.65 53.47 GP-GC 125 3.20 2.33 0.72 0.32 80.2 51.11 6.20 53.5 y 71 52.65 53.47 GP-GC 125 3.20 2.35 0.71 0.31 82.0 55.03 6.20 55.4 v 72 53.47 64.29 65.11 GP-GC 125 3.30 6.20 33 0.72 0.31 84.5 53.7 6.20 55.4 v 73 54.29 55.11 GP-GC 125 3.30 2.38 0.70 0.31 84.5 6.37 6.20 56.7 y 74 55.11 65.94 GP-GC 125 3.36 2.40 0.70 0.31 85.0 56.42 6.20 56.8 v 75 55.94 56.76 GP-GC 125 3.41 6.24 30.69 0.31 85.0 56.42 6.20 56.8 v 77 65.55 46 56.76 GP-GC 125 3.36 2.40 0.70 0.31 86.7 56.92 6.20 57.0 y 79 59.23 60.05 GP-GC 125 3.36 2.48 0.67 0.30 87.5 57.17 6.20 57.7 y 90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0																						
67 49.35 50.18 GP-GC 125 3.00 2.22 0.75 0.32 73.0 50.37 6.20 50.7	66			GP-GC																		
69 51.00 51.82 GP-GC 125 3.10 2.27 0.74 0.32 76.6 52.26 6.20 52.6 y 0.00 0.00 70 51.82 52.65 GP-GC 125 3.15 2.30 0.73 0.32 78.4 53.19 6.20 53.5 y 0.00 0.00 71 52.65 53.47 GP-GC 125 3.20 2.33 0.72 0.32 80.2 54.11 6.20 55.4 y 0.00 0.00 72 53.47 54.29 GP-GC 125 3.25 2.35 0.71 0.31 82.5 55.03 6.20 55.4 y 0.00 0.00 73 54.29 55.11 GP-GC 125 3.26 2.35 0.71 0.31 84.5 56.37 6.20 65.8 y 0.00 0.00 74 55.11 55.94 56.76 GP-GC 125 3.36 2.40 0.70 0.31 85.9 56.87 6.20 65.8 y 0.00 0.00 76 56.76 57.58 6P-GC 125 3.41 2.43 0.69 0.31 85.9 56.87 6.20 67.3 y 0.00 0.00 77 57.58 58.40 GP-GC 125 3.45 2.48 0.67 0.30 87.5 57.17 6.20 57.3 y 0.00 0.00 78 58.40 59.23 GP-GC 125 3.61 2.53 0.66 0.30 87.5 57.17 6.20 57.8 y 0.00 0.00 80 60.05 GP-GC 125 3.61 2.53 0.66 0.30 88.6 57.90 6.20 57.8 y 0.00 0.00 81 60.87 GP-GC 125 3.86 2.56 0.65 0.30 88.6 57.00 6.20 58.3 y 0.00 0.00 82 61.69 GP-GC 125 3.82 2.68 0.65 0.30 88.6 57.00 6.20 58.3 y 0.00 0.00 82 61.69 GP-GC 125 3.82 2.68 0.65 0.30 88.6 57.00 6.20 58.3 y 0.00 0.00 83 62.52 63.34 GP-GC 125 3.82 2.68 0.65 0.30 88.6 57.00 6.20 58.3 y 0.00 0.00 0.00 84 63.34 64.16 GP-GC 125 3.82 2.68 0.65 0.30 88.6 57.00 6.20 58.3 y 0.00				GP-GC		3.00					50.37			٧								
70																						
71 52.65 53.47 GP-GC 125 3.20 2.33 0.72 0.32 80.2 54.11 6.20 55.44 y 0.00 0.00 0.00 73 54.29 55.11 GP-GC 125 3.25 2.35 0.71 0.31 82.5 55.37 6.20 55.4 y 0.00 0.00 0.00 0.00 74 55.11 55.94 6.67 6.62 125 3.36 2.40 0.70 0.31 85.5 56.62 6.6.2 65.8 y 0.00 0.00 0.00 0.00 0.00 75 55.94 56.76 GP-GC 125 3.41 2.43 0.69 0.31 85.9 56.67 6.20 67.3 y 0.00	70	51.82	52.65	GP-GC	125	3.15	2.30	0.73	0.32	78.4	53.19	6.20	53.5									
73 54.29 55.11 GP-GC 125 3.30 2.38 0.70 0.31 84.5 56.37 6.20 56.8 7 7 7 7 7 7 5 5 9 5 6.76 GP-GC 125 3.36 2.40 0.70 0.31 85.9 56.67 6.20 65.8 7 7 7 7 7 5 5 5 9 5 6.76 6 7 6 7 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7																						
74 55.11 55.94 GP-GC 125 3.36 2.40 0.70 0.31 85.0 56.42 6.20 67.0 y 0.00 0.00 0.00 76 56.76 GP-GC 125 3.41 2.43 0.69 0.31 85.9 56.67 6.20 67.0 y 0.00 0.00 0.00 0.00 77 57.58 58.40 GP-GC 125 3.46 2.48 0.67 0.30 87.5 57.17 6.00 67.5 y 0.00 0.00 0.00 0.00 78 58.40 59.23 GP-GC 125 3.56 2.51 0.67 0.30 88.4 57.42 6.20 67.5 y 0.00 0.				GP-GC																		
76 56.76 57.58 GP-GC 125 3.46 2.45 0.68 0.31 86.7 56.92 6.20 57.5 v 0.00 0.00 78 58.40 59.23 GP-GC 125 3.56 2.51 0.67 0.30 87.5 57.17 6.20 57.5 v 0.00 0.00 80 60.05 GP-GC 125 3.66 2.55 0.66 0.30 88.6 57.90 6.20 57.8 v 0.00 0.00 81 60.87 G1.69 GP-GC 125 3.66 2.58 0.65 0.30 88.6 57.90 6.20 57.7 v 0.00 0.00 81 60.87 61.69 GP-GC 125 3.77 2.58 0.65 0.30 88.6 57.90 6.20 57.7 v 0.00 0.00 82 61.69 62.52 GP-GC 125 3.77 2.51 0.64 0.30 88.6 57.04 6.20 57.7 v 0.00 0.00 83 62.52 63.34 GP-GC 125 3.82 2.63 0.64 0.29 88.6 57.04 6.20 57.4 v 0.00 0.00 84 63.34 64.16 GP-GC 125 3.87 2.66 0.63 0.29 88.6 56.49 6.20 56.8 v 0.00 0.00 85 64.16 64.98 GP-GC 125 3.97 2.71 0.62 0.29 88.6 55.95 6.59 5.63 v 0.00 0.00 86 64.98 65.81 GP-GC 125 3.97 2.71 0.62 0.29 88.6 55.95 6.59 5.50 56.3 v 0.00 0.00 87 65.81 66.63 GP-GC 125 4.02 2.74 0.61 0.29 88.6 55.49 5.00 56.8 v 0.00 0.00 88 66.63 67.00 GP-GC 125 4.02 2.76 0.61 0.29 88.6 55.49 5.50 56.3 v 0.00 0.00 0.00 89 67.00 67.45 CH 122 4.18 2.81 0.60 0.28 55.4 34.15 99.00 45.8 n 0.00	74	55.11	55.94	GP-GC	125	3.36	2.40	0.70	0.31	85.0	56.42	6.20	56.8	٧						0.00	0.00	
77 57.58 58.40 GP-GC 125 3.51 2.48 0.67 0.30 87.5 57.17 6.20 57.5 v 0.00 0.00 0.00 78 58.40 59.23 GP-GC 125 3.56 2.51 0.67 0.30 88.4 57.42 6.20 57.8 v 0.00																						
78 58.40 59.23 GP-GC 125 3.56 2.51 0.67 0.30 88.4 57.42 6.20 57.8 y 0.00 0.00 80 60.05 60.87 GP-GC 125 3.66 2.55 0.66 0.30 88.6 57.90 6.20 58.3 y 0.00 0.00 81 60.87 61.89 GP-GC 125 3.77 2.61 0.64 0.30 89.6 57.32 6.20 57.7 y 0.00 0.00 82 61.89 62.52 GP-GC 125 3.77 2.61 0.64 0.30 89.6 57.32 6.20 57.7 y 0.00 0.00 83 62.52 63.34 GP-GC 125 3.82 2.63 0.64 0.29 89.6 57.45 6.20 57.1 y 0.00 0.00 84 63.34 64.16 GP-GC 125 3.87 2.66 0.63 0.29 89.6 56.49 6.20 57.1 y 0.00 0.00 85 64.16 64.98 GP-GC 125 3.92 2.69 0.62 0.29 89.6 56.49 6.20 56.8 y 0.00 0.00 86 64.98 65.81 GP-GC 125 3.97 2.71 0.62 0.29 89.6 55.95 6.20 56.3 y 0.00 0.00 87 65.81 66.63 GP-GC 125 4.02 2.74 0.61 0.29 89.6 55.49 6.20 56.3 y 0.00 0.00 88 66.63 67.00 GP-GC 125 4.02 2.76 0.61 0.29 89.6 55.49 5.59				GP-GC																		
80 60.05 60.87 GP-GC 125 3.66 2.56 0.65 0.30 89.6 57.32 6.20 58.0 y 0.00 0.00 0.00 82 61.69 62.52 GP-GC 125 3.77 2.61 0.64 0.30 89.6 57.32 6.20 57.7 y 0.00 0.00 0.00 0.00 83 62.52 GP-GC 125 3.87 2.61 0.64 0.30 89.6 57.32 6.20 57.1 y 0.00	78	58.40	59.23	GP-GC	125	3.56	2.51	0.67	0.30	88.4	57.42	6.20	57.8							0.00	0.00	
81 60.87 61.69 GP-GC 125 3.72 2.58 0.65 0.30 88.6 57.34 6.20 57.4 v 82 61.69 62.52 69.34 GP-GC 125 3.77 2.61 0.64 0.29 88.6 57.04 6.20 57.4 v 8.4 63.34 64.16 GP-GC 125 3.87 2.68 0.63 0.29 88.6 57.04 6.20 57.8 v 8.5 64.16 64.98 GP-GC 125 3.87 2.65 0.63 0.29 88.6 56.49 6.20 57.8 v 8.6 64.16 64.98 GP-GC 125 3.87 2.68 0.63 0.29 88.6 56.49 6.20 57.8 v 8.6 64.16 64.98 GP-GC 125 3.97 2.71 0.62 0.29 88.6 56.49 6.20 56.8 v 8.7 65.81 66.63 GP-GC 125 3.97 2.71 0.62 0.29 88.6 55.95 6.20 56.8 v 8.8 66.83 GP-GC 125 4.02 2.74 0.61 0.29 88.6 55.95 6.20 56.8 v 8.8 66.83 GP-GC 125 4.02 2.74 0.61 0.29 88.6 55.49 6.20 55.8 v 8.8 66.83 GP-GC 125 4.02 2.74 0.61 0.29 88.6 55.49 6.20 55.8 v 8.9 67.00 67.45 CH 122 4.09 2.77 0.61 0.29 55.4 34.27 99.00 46.1 n 9.0 67.45 68.27 CH 122 4.13 2.79 0.60 0.28 55.4 34.15 99.00 46.1 n 9.0 67.45 68.27 CH 122 4.13 2.79 0.60 0.28 55.4 34.07 99.00 45.8 n 9.0 67.0 69.92 CH 122 4.23 2.84 0.59 0.28 55.4 34.00 99.00 45.8 n 9.0 69.92 70.74 CH 122 4.23 2.84 0.59 0.28 55.4 33.00 99.00 45.8 n 9.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00														٧								
82 61.89 62.52 63.46 GP-GC 125 3.87 2.61 0.64 0.29 89.6 56.76 6.20 57.1 y 83 62.52 63.46 GP-GC 125 3.87 2.68 0.63 0.29 89.6 56.76 6.20 57.1 y 84 63.34 64.16 GP-GC 125 3.87 2.68 0.63 0.29 89.6 56.76 6.20 56.8 y 85 64.16 64.98 65.81 GP-GC 125 3.97 2.71 0.62 0.29 89.6 56.21 6.20 56.6 y 86 64.98 65.81 GP-GC 125 3.97 2.71 0.62 0.29 89.6 55.95 6.20 56.8 y 87 65.81 66.63 GP-GC 125 4.02 2.74 0.61 0.29 89.6 55.95 6.20 56.8 y 88 66.63 67.00 GP-GC 125 4.02 2.77 0.61 0.29 89.6 55.95 5.89 y 89 67.00 67.45 62.7 CH 122 4.09 2.77 0.61 0.29 85.6 55.49 6.20 55.8 y 90 67.45 68.27 CH 122 4.18 2.81 0.60 0.28 55.4 34.27 99.00 46.1 n 90 67.45 68.27 G9.10 CH 122 4.18 2.81 0.60 0.28 55.4 34.15 99.00 45.8 n 92 69.10 69.92 CH 122 4.28 2.84 0.59 0.28 55.4 33.85 99.00 45.6 n 93 69.92 70.74 CH 122 4.28 2.84 0.59 0.28 55.4 33.85 99.00 45.6 n 94 70.74 71.56 CH 122 4.38 2.91 0.58 0.28 55.4 33.30 99.00 44.5 n 95 71.56 72.39 CH 122 4.38 2.91 0.58 0.28 53.4 33.40 99.00 44.5 n 96 77.37 73.21 CH 122 4.43 2.89 0.58 0.28 53.8 32.46 99.00 43.3 n 97 73.21 74.03 CH 122 4.43 2.93 0.58 0.28 53.8 32.46 99.00 43.3 n 98 74.03 74.85 CH 122 4.53 2.98 0.57 0.28 85.4 59.9 99.00 42.7 n 98 74.03 74.85 CH 122 4.53 2.98 0.57 0.28 85.4 53.9 99.00 42.7 n 99 74.03 74.85 CH 122 4.45 2.83 0.59 0.85 53.4 99.00 43.3 n 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	81		61.69	GP-GC										y								
84 63.44 64.16 GP-GC 125 3.87 2.68 0.63 0.29 89.6 56.24 6.20 56.8 v 0.00 0.00 85 64.16 64.98 GP-GC 125 3.92 2.69 0.62 0.29 89.6 56.21 6.20 56.6 v 0.00 0.00 87 65.81 66.83 GP-GC 125 4.06 0.29 89.6 55.95 6.20 56.3 v 0.00 0.00 88 66.63 67.00 GP-GC 125 4.06 2.76 0.61 0.29 89.6 55.49 6.20 55.8 v 0.00 0.00 89 67.00 67.45 CH 122 4.09 2.77 0.61 0.29 89.6 55.49 6.20 55.8 v 0.00 0.00 90 67.45 68.27 CH 122 4.13 2.79 0.60 0.28 55.4 34.15 99.00 46.1 n 0.00 0.00 91 68.27 69.10 CH 122 4.18 2.81 0.60 0.28 55.4 34.15 99.00 45.8 n 0.00 0.00 92 69.10 69.92 CH 122 4.28 2.86 0.59 0.28 55.4 33.85 99.00 45.8 n 0.00 0.00 93 69.92 70.74 CH 122 4.28 2.86 0.59 0.28 55.4 33.30 99.00 45.6 n 0.00 0.00 94 70.74 71.56 CH 122 4.38 2.91 0.58 0.28 55.4 33.30 99.00 44.6 n 0.00 0.00 95 71.56 72.39 CH 122 4.38 2.91 0.58 0.28 53.4 33.90 99.00 43.3 n 0.00 0.00 96 72.39 73.21 CH 122 4.48 2.98 0.57 0.28 53.8 31.92 99.00 43.3 n 0.00 0.00 97 73.21 74.03 CH 122 4.48 2.98 0.57 0.28 52.5 33.39 99.00 43.3 n 0.00 0.00 98 74.03 74.85 CH 122 4.45 2.98 0.57 0.28 52.5 33.99 99.00 43.3 n 0.00 0.00 99 74.03 74.85 CH 122 4.53 2.98 0.57 0.28 52.5 43.99 99.00 63.7 n 0.00 0.00				GP-GC										٧								
85 64,16 64,98 65,16 64,98 67,07 67,45																						
87 65.81 66.63 GP-GC 125 4.02 2.74 0.61 0.29 88.6 55.68 6.20 55.8 y 88 66.63 67.00 GP-GC 125 4.06 2.76 0.61 0.29 88.6 55.49 6.20 55.8 y 89 67.00 67.45 CP 122 4.09 2.77 0.61 0.29 55.4 34.27 99.00 46.1 n 90 67.45 68.27 CP 122 4.18 2.81 0.60 0.28 55.4 34.15 99.00 45.0 n 91 68.27 69.10 CP 122 4.18 2.81 0.60 0.28 55.4 34.15 99.00 45.8 n 92 69.10 69.92 CP 122 4.23 2.84 0.59 0.28 55.4 34.0 99.00 45.8 n 93 69.92 70.74 CP 122 4.23 2.84 0.59 0.28 55.4 33.85 99.00 45.8 n 93 69.92 70.74 CP 122 4.23 2.84 0.59 0.28 55.4 33.71 99.00 45.8 n 94 70.74 71.56 CP 122 4.33 2.89 0.58 0.28 54.5 33.70 99.00 45.4 n 95 71.56 72.39 CP 122 4.33 2.89 0.58 0.28 54.5 33.00 99.00 45.4 n 96 72.39 73.21 CP 122 4.33 2.99 0.58 0.28 55.4 32.46 99.00 45.9 n 97 73.21 74.03 CP 122 4.43 2.93 0.58 0.28 53.2 31.92 99.00 43.9 n 98 74.03 74.85 CP 122 4.53 2.98 0.57 0.28 55.4 31.39 99.00 45.7 n 99 74.03 74.85 CP 122 4.53 2.98 0.57 0.28 52.5 31.39 99.00 42.7 n 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	85	64.16	64.98	GP-GC	125	3.92	2.69	0.62	0.29	89.6	56.21	6.20	56.6							0.00	0.00	
88 66.63 67.00 GP-GC 125 4.06 2.76 0.61 0.29 88.6 55.49 6.20 55.8 y 89 67.00 67.45 6B.27 CH 122 4.09 2.77 0.61 0.29 55.4 34.17 99.00 46.1 n 90 67.45 68.27 CH 122 4.13 2.79 0.60 0.28 55.4 34.15 99.00 46.0 n 91 68.27 69.10 CH 122 4.18 2.81 0.60 0.28 55.4 34.15 99.00 46.0 n 92 69.10 69.92 CH 122 4.23 2.84 0.59 0.28 55.4 33.85 99.00 45.6 n 0.00 0.00 93 69.92 70.74 CH 122 4.28 2.86 0.59 0.28 55.4 33.87 199.00 45.6 n 0.00 0.00 94 70.74 71.56 CH 122 4.38 2.91 0.58 0.28 45.5 33.00 99.00 44.6 n 0.00 0.00 95 71.56 72.39 CH 122 4.38 2.91 0.58 0.28 45.3 33.0 99.00 44.6 n 0.00 0.00 96 72.39 73.21 CH 122 4.38 2.91 0.58 0.28 53.8 32.46 99.00 43.9 n 97 73.21 74.03 CH 122 4.48 2.98 0.57 0.28 52.5 31.39 99.00 42.7 n 0.00 0.00 98 74.03 74.85 CH 122 4.53 2.98 0.57 0.28 82.2 48.9 99.00 63.7 n 0.00 0.00 0.00																						
89 67.00 67.45 62.7 CH 122 4.09 2.77 0.61 0.29 55.4 34.27 99.00 46.1 n 90 67.45 68.27 CH 122 4.18 2.81 0.60 0.28 55.4 34.15 99.00 46.0 n 91 68.27 69.10 CH 122 4.18 2.81 0.60 0.28 55.4 34.15 99.00 45.8 n 92 69.10 69.92 CH 122 4.28 2.84 0.59 0.28 55.4 34.00 99.00 45.8 n 93 69.92 70.74 CH 122 4.28 2.84 0.59 0.28 55.4 33.05 90.04 55.8 n 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.																						
91 68.27 69.10 CH 122 4.18 2.81 0.60 0.28 55.4 34.00 99.00 45.8 n 0.00 0.00 0.00 92 69.10 69.92 CH 122 4.28 2.89 0.59 0.28 55.4 33.71 99.00 45.6 n 0.00 0.00 94 70.74 71.56 CH 122 4.28 2.89 0.59 0.28 55.4 33.71 99.00 45.4 n 0.00 0.00 95 71.56 72.39 CH 122 4.33 2.89 0.58 0.28 55.4 33.71 99.00 43.9 n 0.00 0.00 96 72.39 73.21 CH 122 4.43 2.93 0.58 0.28 53.2 31.92 99.00 43.3 n 0.00 0.00 97 73.21 74.03 CH 122 4.43 2.93 0.57	89	67.00	67.45	CH	122	4.09	2.77	0.61	0.29	55.4	34.27	99.00	46.1	n						0.00	0.00	
92 69.10 69.92 CH 122 4.23 2.84 0.59 0.28 55.4 33.85 99.00 45.6 n 0.00 0.00 0.00 94 70.74 71.56 CH 122 4.28 2.86 0.59 0.28 55.4 33.71 99.00 44.6 n 0.00 0.00 95 71.56 72.39 CH 122 4.38 2.91 0.58 0.28 53.8 32.46 99.00 44.6 n 0.00 0.00 96 72.39 73.21 CH 122 4.38 2.93 0.58 0.28 53.2 31.92 99.00 43.9 n 0.00 0.00 0.00 97 73.21 74.03 CH 122 4.48 2.98 0.57 0.28 52.5 31.39 99.00 43.7 n 0.00 0.00 98 74.03 74.85 CH 122 4.53 2.98																						
93 69.92 70.74 CH 122 4.28 2.86 0.59 0.28 55.4 33.71 99.00 45.4 n 0.00 0.00 0.00 0.00 0.00 0.00 0.00																						
95 71.56 72.39 CH 122 4.38 2.91 0.58 0.28 53.8 32.46 99.00 43.9 n 0.00 0.00 0.00 96 72.39 73.21 CH 122 4.38 2.93 0.58 0.28 53.2 31.92 99.00 43.3 n 0.00 0.00 0.00 97 73.21 74.03 CH 122 4.48 2.96 0.57 0.28 52.5 31.39 99.00 42.7 n 0.00 0.00 0.00 98 74.03 74.85 CH 122 4.53 2.98 0.57 0.28 82.2 48.95 99.00 63.7 n 0.00 0.00 0.00 0.00 0.00 0.00 0.00	93	69.92	70.74	CH	122	4.28	2.86	0.59	0.28	55.4	33.71	99.00	45.4							0.00	0.00	
96 72.39 73.21 CH 122 4.43 2.93 0.58 0.28 53.2 31.92 99.00 43.3 n 0.00 0.00 0.00 0.00 0.00 0.00 0.00																						
97 73.21 74.03 CH 122 4.48 2.96 0.57 0.28 52.5 31.39 99.00 42.7 n 0.00 0.00 0.00 0.00 0.00 0.00 0.00																						
99 74.85 75.68 CH 122 4.58 3.01 0.57 0.27 82.5 48.92 99.00 63.7 n 0.00 0.00	97	73.21	74.03	CH	122	4.48	2.96	0.57	0.28	52.5	31.39	99.00	42.7	n						0.00	0.00	

S1294-05-01 Liquefaction - Cemex Cache Creek_B2 12/11/2017, 1:06 PM